
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2011

Handling the complexity of routing problem in
modern VLSI design
Yanheng Zhang
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Electrical and Computer Engineering Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Zhang, Yanheng, "Handling the complexity of routing problem in modern VLSI design" (2011). Graduate Theses and Dissertations.
11896.
https://lib.dr.iastate.edu/etd/11896

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F11896&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F11896&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11896&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F11896&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F11896&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11896&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=lib.dr.iastate.edu%2Fetd%2F11896&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/11896?utm_source=lib.dr.iastate.edu%2Fetd%2F11896&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Handling the complexity of routing problem in modern VLSI design

by

Yanheng Zhang

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Engineering

Program of Study Committee:
Chris Chu, Major Professor

Randall L. Geiger
Akhilesh Tyagi
Degang Chen
Yong Guan

Iowa State University

Ames, Iowa

2010

Copyright c© Yanheng Zhang, 2010. All rights reserved.

www.manaraa.com

ii

DEDICATION

To my parents and my wife

www.manaraa.com

iii

TABLE OF CONTENTS

LIST OF TABLES . v

LIST OF FIGURES . vii

ABSTRACT . ix

CHAPTER 1. GENERAL INTRODUCTION 1

Introduction . 1

Thesis Organization . 4

CHAPTER 2. FastRoute3.0: A Fast and High Quality Global Router Based

on Virtual Capacity . 7

Abstract . 7

Introduction . 8

Materials and Methods . 10

Results and Discussion . 20

Conclusion . 26

CHAPTER 3. CROP: Fast and Effective Placement Refinement for Routabil-

ity . 27

Abstract . 27

Introduction . 28

Materials and Methods . 31

Results and Discussion . 50

Conclusion . 57

Acknowledgements . 57

www.manaraa.com

iv

CHAPTER 4. RegularRoute: An Efficient Detailed Router with Regular

Routing Patterns . 58

Abstract . 58

Introduction . 59

Materials and Methods . 62

Results and Discussion . 78

Conclusion . 84

Acknowledgements . 84

CHAPTER 5. IGD: An Integrated Global Routing and Detailed Routing

Algorithm . 85

Abstract . 85

Introduction . 86

Materials and Methods . 89

Results and Discussion . 99

Conclusion . 102

CHAPTER 6. GENERAL CONCLUSIONS . 103

General Discussion . 103

Recommendation for Future Research . 103

REFERENCES . 104

ACKNOWLEDGEMENTS . 110

www.manaraa.com

v

LIST OF TABLES

Table 2.1 ACE usage assignment notation . 15

Table 2.2 Comparison of different modes on 7 routable 3D version ISPD07 bench-

marks . 18

Table 2.3 Comparison of via aware maze routing and via ignored maze routing on

7 routable 3D version ISPD07 benchmarks 19

Table 2.4 Experimental benchmarks statistics . 21

Table 2.5 Comparison of FastRoute3.0, and published global routers on ISPD98

Benchmarks. 22

Table 2.6 Comparison of FastRoute3.0, and published global routers on 3D version

of ISPD07 global routing contest benchmarks 24

Table 2.7 Comparison of FastRoute3.0, and ISPD08 global routing contest results 25

Table 3.1 Notation of look-up tables. 49

Table 3.2 Apply dynamic programming to construct look-up tables. 50

Table 3.3 Congestion reduction in CROP flow. 52

Table 3.4 CROP results on ISPD-GR benchmarks and Fixed Macro(FM) mode . 54

Table 3.5 CROP results on ISPD-DR benchmarks 56

Table 4.1 Results for local net routing on ISPD98 testcases 80

Table 4.2 Results of RegularRoute and WROUTE for ISPD98 testcases 82

Table 4.3 Results of RegularRoute and WROUTE for ISPD05/06 testcases . . . 83

Table 5.1 Detailed routing solution by detailed router RegularRoute for routable

global routing benchmarks in ISPD07/08 global routing contest. . . . 86

www.manaraa.com

vi

Table 5.2 Results comparison with empirical capacity assignment up to stage2 in

IGD on ISPD98 derived testcases. 99

Table 5.3 Results comparison for IGD with different modes 101

www.manaraa.com

vii

LIST OF FIGURES

Figure 1.1 Typical VLSI physical design flow from logical design to tape out. . . . 3

Figure 1.2 Thesis organization of following chapters. 4

Figure 2.1 Global bins and corresponding global routing grid graph. 11

Figure 2.2 FastRoute3.0 framework . 12

Figure 2.3 Probabilistic estimation. 13

Figure 2.4 Two-pin net usage assignment(vertical case). 14

Figure 2.5 The ACE two-pin net assignment algorithm for vertical edges 16

Figure 2.6 The ACE usage assignment algorithm 17

Figure 2.7 FastRoute3.0 overflow reduction during maze routing iteration. 23

Figure 3.1 Basic idea of congestion-driven module shifting. 30

Figure 3.2 An illustration of G-Cells and global routing across G-Cell boundary. . 32

Figure 3.3 Algorithm flow. 33

Figure 3.4 Notation for the LP formulation. 35

Figure 3.5 Convert the G-Cell boundary into B-graph. 39

Figure 3.6 Replace movement edges with diagonal edges to facilitate longest path

computation. 39

Figure 3.7 The longest path algorithm and iterative scaling for deciding boundary

locations . 41

Figure 3.8 Problem of compacting design to left 42

Figure 3.9 Module shifting illustration. 42

Figure 3.10 Merging of G-Cells for macro blocks. 44

www.manaraa.com

viii

Figure 3.11 Path scaling for fixed macro case. 46

Figure 3.12 The longest path algorithm and iterative scaling for design with fixed

macros . 47

Figure 3.13 Number of Z routing paths passing through each horizontal global rout-

ing edge. 49

Figure 4.1 (a) Non-trivial routing patterns. (b) Regular routing patterns. 61

Figure 4.2 Definitions of track, segment and panel. 63

Figure 4.3 Flow chart for RegularRoute. 65

Figure 4.4 Track blockage count for single trunk V-Tree and RSMT. 66

Figure 4.5 Concepts for incident terminal, pending segment and terminal connection. 68

Figure 4.6 Conflicting choices and conflict graph. 69

Figure 4.7 (a) G-Cell boundary density. (b) Detour component. (c) Flexibility

component . 70

Figure 4.8 Calculation of inside/outside degree for each vertex. 72

Figure 4.9 Partial assignment technique for unassigned segments. 74

Figure 4.10 Terminal promotion to avoid terminal connection failure. 76

Figure 5.1 Problem formulation for global routing and detailed routing (a) Detailed

routing with panel, track, segments with two layers (b) Corresponding

global routing grid graph . 90

Figure 5.2 Flow of IGD . 92

Figure 5.3 Conservative capacity reduction . 94

Figure 5.4 Probabilistic pin promotion using window based pin density evaluation 96

Figure 5.5 Adaptive global capacity adjustment based on unassigned global segment 97

www.manaraa.com

ix

ABSTRACT

In VLSI physical design, the routing task consists of using over-the-cell metal wires to

connect pins and ports of circuit gates and blocks. Traditionally, VLSI routing is an important

design step in the sense that the quality of routing solution has great impact on various design

metrics such circuit timing, power consumption, chip reliability and manufacturability etc. As

the advancing VLSI design enters the nanometer era, the routing success (routability issue) has

been arising as one of the most critical problems in back-end design. In one aspect, the degree of

design complexity is increasing dramatically as more and more modules are integrated onto the

chip. Much higher chip density leads to higher routing demands and potentially more risks in

routing failure. In another aspect, with decreasing design feature size, there are more complex

design rules imposed to ensure manufacturability. These design rules are hard to satisfy and

they usually create more barriers for achieving routing closure (i.e., generate DRC free routing

solution) and thus affect chip time to market (TTM) plan.

In general, the behavior and performance of routing are affected by three consecutive phases:

placement phase, global routing phase and detailed routing phase in a typical VLSI physical

design flow. Traditional CAD tools handle each of the three phases independently and the

global picture of the routability issue is neglected. Different from conventional approaches

which propose tools and algorithms for one particular design phase, this thesis investigates the

routability issue from all three phases and proposes a series of systematic solutions to build a

more generic flow and improve quality of results (QoR).

For the placement phase, we will introduce a mixed-sized placement refinement tool for

alleviating congestion after placement. The tool shifts and relocates modules based on a global

routing estimation. For the global routing phase, a very fast and effective global router is

www.manaraa.com

x

developed. Its performance surpasses many peer works as verified by ISPD 2008 global routing

contest results. In the detailed routing phase, a tool is proposed to perform detailed routing

using regular routing patterns based on a correct-by-construction methodology to improve

routability as well as satisfy most design rules. Finally, the tool which integrates global routing

and detailed routing is developed to remedy the inconsistency between global routing and

detailed routing.

To verify the algorithms we proposed, three sets of testcases derived from ISPD98 and

ISPD05/06 placement benchmark suites are proposed. The results indicate that our proposed

methods construct an integrated and systematic flow for routability improvement which is

better than conventional methods.

www.manaraa.com

1

CHAPTER 1. GENERAL INTRODUCTION

Introduction

The physical design of very large scale integrated circuits (VLSI) primarily consists the

tasks of realizing the size and location of all contained logic modules (placement) and the

wires connecting pins and ports (routing). Traditionally, VLSI routing has been an important

problem in VLSI back-end design since the quality of routing results has great impact on various

design metrics such as circuit timing, power consumption, chip reliability and manufacturability

etc. With the advancing fabrication technology enters the nanometer scale, the physical design,

especially VLSI routing (routability issue) has been facing more challenges. The challenges

come from two parts. First, with much higher density on single chip, the problem size of

routing is growing in an exponential rate. With more and more modules integrated into the

chip, the routing requirement for connecting these modules is also growing dramatically. The

routing problem is becoming harder to handle. Second, with diminishing feature size, more

design constraints and design rules need be respected. For instance, there are many complex

design rules that are imposed to ensure manufacturability. It has been reported that for 32nm

process, the number of design rules reaches several thousand[1]. And the design rule manual has

reached approximately one thousand pages [2]. Because of these challenges, the design closure

can be seriously affected because of the delayed routing closure. The chip time to market

(TTM) cycle can also be significantly prolonged due to unaccomplished routing mission.

VLSI routing problem is NP-hard[3], even for the simplest case with only a few nets and

pins. To handle this problem, people usually divide the routing process to two phases: global

routing and detailed routing. In global routing phase, chip layout is partitioned into a set

of regular global routing cells (G-Cells) and global routing grid graph is constructed. Rough

www.manaraa.com

2

routing decision will be made on a G-Cell to G-Cell connection on the global routing grid graph.

The subsequent detailed routing is formulated to route all nets defined in netlist based on the

provided global routing solution. It realizes the exact routing paths considering geometrical

constraints as well as various design rules.

Traditionally, routing problem is handled by providing good solution either to global routing

phase or detailed routing phase. There have been many researches conducted for global routing

or detailed routing respectively. In particular, for global routing, the most popular approach

is iterative ripup and reroute based. The approach first breaks each multi-pin net into a set of

two-pin nets. Then the two-pin nets are routed in a sequential order. The routing solution is

iteratively refined by ripup and reroute until it reaches an acceptable solution quality in terms of

overflow. There have been many works proposed in the past for boosting the ripup and reroute

approach including works such as [4, 5, 6, 7, 8]. The two consecutive ISPD global routing

contests [28, 29] have proved the dominance of sequential router and many new routers such as

Archer[9], BoxRouter2.0 [10], FGR [11] and NTHU-R[12] are presented. Most of these routers

adopt the history based idea[25] when performing ripup and reroute. In terms of detailed

routing, it has been a traditional EDA problem since 70’s when early works including the

left edge algorithm[13] and the algorithm to handle channel routing [14] are presented. There

are many new approaches that have been proposed during last two decades. For instance,

DUNE[15] and MR[16] proposed multi-level process to handle gridless routing. The work in

[17] proposed routing FPGA using boolean satisfiability. In track routing[18], an intermediate

step between global routing and detailed routing is proposed. And a latest work [19] presented a

meaningful technique to tackle the escape routing for dense pin clusters, which is the bottleneck

of detailed routing.

However, considering the size and complexity of modern design, it becomes insufficient to

handle the routability issue from the two routing phases independently. To facilitate developing

better router and routing flow, it is necessary for better leveraging all routability related phases

in physical design flow and remedying the inconsistencies between each phase. As shown in

Figure 1.1, VLSI physical design typically contains partitioning, floorplanning, placement and

www.manaraa.com

3

Partitioning

Floorplanning

Placement Physical
Design

Post Layout
Simulation

Logic Design

Tape Out

Global Routing

Detailed Routing

Routing
Related
Phases

Figure 1.1 Typical VLSI physical design flow from logical design to tape out.

www.manaraa.com

4

routing(global routing and detailed routing), which is after logical synthesis and before post

layout simulation. Partitioning and floorplanning are early physical design phases which do

not have great impact on routing performance because the size and position of each module is

not yet determined. Placement, global routing and detailed routing are the phases that have

close relationship with routability issue. Therefore, unlike traditional methods, this thesis will

provide a series of systematic solutions for the three design phases to build a more generic and

high-performance routing flow. With the tools we proposed, a lot of complicated design can be

handled with ease and short runtime.

To assist the analysis for all the proposed tools and algorithms, we derive three sets of design

testcases from ISPD98[20] and ISPD05/06 [21, 22] for performance verification. Experimental

results reveal that the routing performance for each of the three phases can be greatly improved.

Thesis Organization

As mentioned in earlier section, this thesis will provide solutions for each of the three phases

related to the routability problem. The organization of following chapters can be viewed in

Figure 1.2.

Placement

Global Routing

Detailed Routing

FastRoute3.0

CROP

RegularRoute

IGD

Figure 1.2 Thesis organization of following chapters.

In Chapter 2, we will introduce FastRoute 3.0, a very fast and efficient global router based

on the virtual capacity idea. FastRoute 3.0 is the solution we provide for the global routing

www.manaraa.com

5

stage. It is mainly based on the virtual capacity idea. The virtual capacity idea encourages the

usage of less congested routing edges and avoids using the routing edges that are consistently

congested. Besides the virtual capacity idea, we also include discussion for some solution

quality improvement techniques such as via aware maze routing and adaptive maze function for

reducing the number of vias and improving wirelength respectively. The global router can save

considerable runtime spent on ripup and reroute over conventional maze routing techniques. It

is also faster than most of its peer works as verified by ISPD 2008 global routing contests[23].

Next in Chapter 3, we will propose a systematic solution for placement phase. A tool called

CROP is proposed to refine any legalized placement solution to improve routability. The tool

is independent of any placer, which enables CROP to be a postprocessing technique for any

placement tool. CROP interleves a congestion-driven module shifting and a congestion-driven

detailed placement technique. The shifting technique targests at better allocating routing re-

sources. The shifting in each direction (X’s or Y’s) is formulated as a linear program (LP) for

resizing each G-Cell. It’s then further simplified to solve a less expensive longest-path compu-

tation in a very fast runtime. The congestion-driven detailed placement is applied to better dis-

tribute the routing demands. It is realized by weighting the half-perimeter wirelength (HPWL)

with congestion factor during detailed placement. The tool could handle placement testcases

with movable and/or fixed macro blocks. And both the global routing phase routability and

detailed routing routability are checked using an academic global router and an industrial rout-

ing tool respectively. The experiments show great routability improvement can be achieved by

using CROP.

In Chapter 4, we move to the detailed routing phase and provide a systematic solution

called RegularRoute for better routing success as well as design rule satisfaction. It is based on

a correct-by-construction strategy. With the input 2-D global routing solution and underlying

routing tracks. The detailed routing problem is solved in a layer by layer manner. For each layer,

the routing tracks are partitioned and organized in panels. Assigning global segments in each

panel is formulated as a Maximum Weighted Independent Set (MWIS) problem and solved

panel by panel. The experiments demonstrate that RegularRoute surpasses the industrial

www.manaraa.com

6

router which is frequently used by IC designers.

In Chapter 5, we will introduce a tool called IGD. It is the first algorithm ever which in-

tegrates global routing and detailed routing. The global router we proposed in Chapter 2 and

the detailed router we proposed in Chapter 4 are integrated. The proposed method works on

remedying the inconsistency between the two phases on setting the global edge capacity more

precisely. In particular, the algorithm performs an initial capacity prediction to provide more

accurate global edge capacity considering local pins, local connections and probabilistic pin

promotion for each G-Cell. We also propose an iterative improvement framework to consis-

tently improve the detailed routing solution in terms of the number of unassigned segments.

The experimental results demonstrate that the algorithm can greatly reduce the number of

unassigned segments.

In Chapter 6, general conclusion of the entire thesis will be made. And the future research

recommendation will also be presented.

www.manaraa.com

7

CHAPTER 2. FastRoute3.0: A Fast and High Quality Global Router

Based on Virtual Capacity

A paper published in International Conference on Computer-Aided Design

Yanheng Zhang, Yue Xu and Chris Chu

Abstract

As an easily implemented approach, ripup and reroute has been employed by most of

today’s global routers, which iteratively applies maze routing to refine solution quality. But

traditional maze routing is susceptible to get stuck at local optimal results. In this work, we

will present a fast and high quality global router FastRoute3.0, with the new technique named

virtual capacity. Virtual capacity is proposed to guide the global router at maze routing stage

to achieve higher quality results in terms of overflow and runtime. During maze routing stage,

virtual capacity works as a substitute for the real edge capacity in calculating the maze routing

cost. There are two sub techniques included: (1) virtual capacity initialization, (2) virtual

capacity update. Before the maze routing stage, FastRoute3.0 initializes the virtual capacity

by subtracting the predicted overflow generated by adaptive congestion estimation (ACE) from

the real edge capacity. And in the following maze routing iterations, we further reduce the

virtual capacity by the amount of existing overflow(edge usage minus real edge capacity) for

the edges that are still congested. To avoid excessive ”pushing-away” of routing wires, the

virtual capacity is increased by a fixed percentage of the existing overflow if edge usage is

smaller than real edge capacity.

Experimental results show that FastRoute3.0 is highly proficient dealing with ISPD98,

ISPD07 and ISPD08 benchmark suites. The results outperform published ripup and reroute

www.manaraa.com

8

based academic global routers in both routability and runtime. In particular, (1) FastRoute3.0

completes routing all the ISPD98 benchmarks. (2) For ISPD07 and ISPD08 global routing

contest benchmarks, it generates 12 out of 16 congestion free solutions. (3) The total runtime

is enhanced greatly.

Introduction

As the feature size of modern VLSI design continues to shrink, the ascending circuit density

poses greater challenges for modern chip routers. Modern designs are liable to congestion

problems because of the increasingly concentrated routing demands. Besides, due to the rapidly

growing problem size, the runtime required for completing a routing task is much longer than

before.

placement stage and routing stage. Placement determines the instance and pin locations

and hence the degree of difficulty for the routing problem that follows. Min and Chu [7] pointed

out that to guide the placer to produce a routable placement, the routing estimation during

placement should be consistent with the actual routing in the routing stage. It is desirable

to have a fast router that can be repeatedly called right after the placement step for a quick

estimation. The estimating router will be identical with the one used in the routing stage.

From this sense, modern global routers need better take both runtime and routability issues

into consideration.

In VLSI routing, global routing is an essential phase of the whole routing scheme, which

determines routing usage based on an abstracted grid graph. Many global routing techniques

have been proposed since the 1960s. The most popular global routing approach is iterative

ripup and reroute based. The approach first breaks each multi-pin net into a set of two-pin

nets. Then the two-pin nets are routed sequentially based on a predetermined order. The

routing solution is iteratively refined by rip-up and reroute until reaching acceptable quality.

However, the heuristic nature of such an approach is prone to getting stuck at local optimal

solutions.

There have been several methods proposed to boost the quality of iterative ripup and reroute

www.manaraa.com

9

approach. Kastner et al. [4] proposed a pattern based routing scheme. Hadsell and Madden

[5] proposed to guide the routing by amplifying the congestion map with a new congestion

cost function. BoxRouter [6] proposed a hybrid approach with the application of ILP to simul-

taneously handle multiple nets and achieved better routability. FastRoute [7] achieved very

fast runtime by exploring congestion driven RSMT to avoid the extensive usage of maze rout-

ing. FastRoute2.0 [24] improved the solution quality over FastRoute by introducing monotonic

routing and multi source multi sink maze routing. Recently, Archer [9], BoxRouter2.0 [10],

FGR [11], and NTHU-R [12] are presented. All these four techniques employ the negotiation-

based maze routing that was introduced by PathFinder [25]. Negotiation-based maze routing

increases the maze routing cost for the edges that are consistently congested.

In this paper, we propose the virtual capacity technique which is a systematic way of tackling

the congestion problem. As implied by the name, virtual capacity idea tries to guide ripup and

reroute global router in the maze routing stage by the ”virtual” capacities, instead of the real

ones. Given a global routing solution, consider any congested routing edge e. Assume edge e

has capacity ce, routing demand ue and overflow oe(= ue − ce > 0). The basic idea of virtual

capacity is to reduce the capacity of e by oe units (i.e., set the virtual capacity to ce − oe)

and then run another round of global routing. Because of the reduction in capacity, edge e

becomes more expensive to use and hence some of its routing demand will be pushed away. In

the ideal situation, exactly oe units of routing demand will be pushed away in order to bring

the congestion back to the level of the previous round. Thus, the new routing demand will be

ue−oe = ce, i.e., the same as the original capacity. In order words, edge e will not be congested

in the second round of global routing. In reality, less than oe units of routing demand will get

pushed away because other edges may not be willing to absorb the pushed routing demand.

Nevertheless, virtual capacity is a systematic way to effectively reduce the overflow.

In FastRoute3.0, the virtual capacity is initialized by reducing the real capacity with the

amount of estimated overflow generated by adaptive congestion estimation(ACE). During the

following maze routing process, it is further reduced by the amount of existing overflow if

the edge is still congested. Otherwise it is increased by timing a factor to prevent excessive

www.manaraa.com

10

subtraction.

We develop FastRoute3.0 by integrating the new techniques into FastRoute2.0 [24], a fast

rip-up and reroute based global router.

Compared with the other published academic global routers, FastRoute 3.0 achieves much

better results in both routability and runtime. In particular, it completes routing all the ISPD98

benchmarks. For the ISPD07 and ISPD08 global routing contest benchmarks, it successfully

generates 12 out of 16 congestion free solutions in very short runtime.

The next few sections are organized as follows: Section 2 describes the framework of Fas-

tRoute3.0. Section 3 presents the virtual capacity idea. Section 4 introduces two techniques

that are effective in via reduction and convergence speedup. Section 5 discusses experimental

results and comparisons. Conclusion is made in the section 6.

Materials and Methods

Preliminaries

Grid Graph Model

As is illustrated in figure 1, the whole routing region is partitioned into a number of global

bins. Each global bin is represented by one node and each common boundary is represented by

one edge in the grid graph. The edge is called global edge with the capacity of ce. The overflow

is defined as how much is usage ue over the ce. If ue is smaller than ce, oe = 0, otherwise

oe = ue − ce.

Overview of FastRoute3.0

The flow of FastRoute3.0 is illustrated in figure 2. There are six major steps in the flow.

Step 1, 3, 4 are techniques that we borrow from FastRoute2.0. The step 1 is multi-pin nets

decomposition. We utilize FLUTE2.5 [26] to generate the congestion driven RSMT. Then the

RSMT of all the multi-pin nets are decomposed into a group of two-pin nets. The step 2 is the

www.manaraa.com

11

Cells

Global Bins

Global Edges

(a)

Global Edges

Global Bins

(b)

Cells

Global Bins

Global Edges

(a)

Cells

Global Bins

Global Edges

Cells

Global Bins

Global Edges

(a)

Global Edges

Global Bins

(b)

Global Edges

Global Bins

(b)

Figure 2.1 Global bins and corresponding global routing grid graph.

virtual capacity initialization technique which will be discussed in section 3. Step 3 is pattern

routing. Normally L routing and Z routing are applied in this step. Step 4 is multi source

multi sink maze routing. The maze routing cost is calculated by adaptive maze function based

on virtual capacity. And step 5 is the virtual capacity update which is performed at the end of

each maze routing iteration. The virtual capacity value will be either increased or decreased

depends on current edge usage compared with original edge capacity. Step 4 and step 5 will be

iteratively applied until the total overflow gets stuck. Step 6 performs layer assignment after

the program runs out of the iterative ripup and reroute loop.

Virtual Capacity Technique

In this section, we will present the virtual capacity technique. Congestion reduction is

key metric to evaluate a global router. Recent published academic global routers including

[10], [11], [27] and [12] employ negotiation based maze routing technique, which increments the

maze routing cost for edges that are consistently congested. In FastRoute3.0, we propose virtual

capacity, an alternative but systematic method to handle congestion problem. Virtual capacity

technique consists of two ideas. Section III.A discusses the virtual capacity initialization.

www.manaraa.com

12

FastRoute3.0 Framework
begin

Step1 : Congestion Driven Multi-Nets Decomposition
Step2 : Virtual Capacity Initialization
Step3 : Pattern Routing (L and Z Routing)
while(total overflow not gets stuck)

Step4 : Multi Sink Multi Source Maze Routing
Step5 : Virtual Capacity Update

end while
Step6 : Layer Assignment

end

Figure 2.2 FastRoute3.0 framework

Section III.B describes the criteria how virtual capacity is updated.

Virtual Capacity Initialization by ACE

Virtual Capacity is initialized by subtracting the estimated overflow from the real edge

capacity. In FastRoute3.0 we use adaptive congestion estimation(ACE) technique to predict

the overflow. The idea is to assign net usage to proper routing edge and calculate the estimated

overflow accordingly. Since before the maze routing, each decomposed two-pin net is routed

without detour inside the bounding box. And the task of a global router, in general, is to

distribute routing demand. The estimation is therefore based on the following two assumptions:

(1) Estimating region of each two-pin net is confined within the bounding box. (2) Fractional

usage assignment is allowed. The first assumption suggests that we only consider the routing

edges inside the bounding box. The second assumption permits breaking the integer usage into

fractional values. It keeps in accordance with the objective to evenly distribute the net usage,

because fractional values offer more freedom in filling routing demands.

For the runtime consideration, the estimation needs be kept simple and effective. The

simplest way of predicting congestion is probabilistic based. For instance, figure 3 illustrates

a routing example with four two-pin nets, A, B, C and D. Here we suppose: (1) the edge

www.manaraa.com

13

Line T

A

A B

B

C

C

D

D

edge

Figure 2.3 Probabilistic estimation.

capacity is 1; (2) estimation goes inside each bounding box; (3) each two-pin net has equivalent

probability to pass through the edges along the same row or column. In this case, net D has

1/4 of probability of passing each of the vertical edge along line T. The same rule applies, the

total probabilistic usage of the leftmost vertical edge, here we denotes as edge, will become:

(1 + 1/2 + 1/3 + 1/4). Likewise, for the case with N such nets, the probabilistic usage of edge

will be: U(edge) = (1 + 1/2 + 1/3 + · · · 1/N). The function is also called harmonic function

which diverges when N approximates infinity. In other word, the function will generate a large

estimated usage for edge. However, as depicted in figure 3, the routing case, regardless of the

value of N , is entirely routable without detour. Hence the desired estimated usage of edge is

1. It fully shows the deficiency of the traditional probabilistic usage assignment technique.

FastRoute3.0 utilizes ACE instead to perform the usage assignment. The notation of prob-

lem formulation is shown in table 1. Each two-pin net has the usage of 1, and the objective

is to assign the usage to global routing edges more evenly. As the example discussed above,

the problem is too much usage is piled on some edge, which could be assigned elsewhere. Also,

since the usage assignment is applied in a sequential order, the permutation method promi-

nently affects the accuracy. Therefore in sum, there are two sub problems involved: (1) the

usage assignment for single two-pin net; (2) the sequential assignment ordering of a group of

www.manaraa.com

14

nets.

yGrid

Cost

Original Cost Assigned Usage

two-pin net assignment

Figure 2.4 Two-pin net usage assignment(vertical case).

Two-pin net assignment Consider the usage assignment of one single two-pin net, the

usage ready to be assigned within the bounding box is 1. Without loss of generality, here

we discuss the assignment for vertical edges. The same criteria will be applied for horizontal

edges. The usage assignment algorithm for vertical edges is shown in figure 5. Each row is

processed independently. Inside one row, edges are sorted in a decreasing order according to

the value of costVi,j , which is equal to pV
i,j +mV

i −cV
i,j . mV

i is the value of maximum edge capacity

of row i. The algorithm compares the average potential assigned usage with largest current

assigned usage. It iteratively excludes the edge with largest current assigned usage until an

even assignment is possible. The time complexity required for processing single two-pin net

www.manaraa.com

15

Table 2.1 ACE usage assignment notation

N number of two-pin nets
BBoxk bounding box of netk

rk number of rows inside BBoxk

ck number of columns inside BBoxk

leftk left coordinate of BBoxk

rightk right coordinate of BBoxk

topk top coordinate of BBoxk

bottomk bottom coordinate of BBoxk

c
V/H
i,j capacity of the edge

V/H
i,j

p
V/H
i,j current assigned usage of edge

V/H
i,j

netk is O(rkck · log(ck)). Figure 4 illustrates the assignment process.

Net processing order ACE chooses to process smaller span nets with higher priority.

The net span represents width of bounding box in vertical edge assignment and likewise height

of bounding box in horizontal edge assignment. In experiment we discover that nets with larger

spans offer more choices to distribute the net usage. Therefore we permutate the net by net

span and perform usage assignment for smaller span nets first. Figure 6 shows the detail of the

whole ACE algorithm.

Now we apply ACE to solve the routing example in figure 3. Consider vertical edges along

the line T as before. Due to the permutation, the net processing order becomes A→B→C→D.

After assigning net A, current assigned usage becomes(1,0,0,0). And we will get (1,1,0,0) after

assigning net B. As it goes on, the final assigned usage will be (1,1,1,1). So the estimation

won’t report any potential congestion, which matches exactly with the analysis.

After the estimation, virtual capacity will be initialized by equation 1.

vce = rce − (max(0, pe − rce)) ∀e (2.1)

In the equation, rc denotes real edge capacity, p is the final assigned usage obtained by ACE.

The new capacity after subtraction is named virtual capacity, which is vc in abbreviation.

Now we analyze the time complexity of ACE technique. The ordering of N two-pin nets

takes O(N · log(N)). For each net, the worst case time complexity is O(G2log(G)), G is the

www.manaraa.com

16

Algorithm ACE two-pin net assignment vertical(netk)

begin
1 for (i = topk · · · bottomk + 1)
2 mV

i = max(cV
i,j), j ∈ [leftk, rightk]

3 ∆ = rightk − leftk + 1
4 for (j = leftk · · · rightk)
5 costVi,j = pV

i,j + mV
i − cV

i,j

6 Csum =
∑

costVi,j (j ∈ [leftk, rightk])
7 Sort costVi,j(j ∈ [leftk, rightk]) by decreasing order
8 Copy sorted edge index into queue Q
9 for (t = 1 · · ·∆)
0 if 1+Csum

∆−t+1 > costVi,Q(t)

1 for (n = t · · ·∆)
2 pV

i,Q(n) = 1+Csum
∆−t+1 −mV

i + cV
i,Q(n)

3 break out of the second for loop
4 else
5 Csum = Csum − costVi,Q(t)

6 end for
7 end for
end

Figure 2.5 The ACE two-pin net assignment algorithm for vertical edges

maximum number of horizontal and vertical grids. Hence, in general, the overall worst case

time complexity is O(N · log(N) + NG2 · log(G)). But the bounding box of a two-pin net is

generally small, therefore on average, ACE accounts for nearly 20% of total runtime.

Virtual Capacity Update

After the virtual capacity initialization, FastRoute3.0 substitutes virtual capacity for the

real edge capacity to guide maze routing. But as the ripup and reroute proceeds, especially after

several iterations, the initial virtual capacity value becomes less effective. Sometimes it even

misleads the router. One reason for causing this phenomena is that the congestion estimation

is performed within the bounding box. However, that assumption is not supported by maze

routing, which is very likely to generate a lot of detour during rip up and reroute iterations.

www.manaraa.com

17

Algorithm ACE usage assignment()

begin
1 pV

i,j = 0 ∀i, j
2 pH

i,j = 0 ∀i, j

3 Sort two-pin nets by BBox width with increasing order
4 Copy sorted nets into queue QV

5 for (t = 1 · · ·N)
6 ACE two-pin net assignment vertical(QV (t))
7 end for

8 two-pin nets by BBox height with increasing order
9 Copy sorted nets into queue QH

0 for (t = 1 · · ·N)
1 ACE two-pin net assignment horizontal(QH(t))
2 end for
end

Figure 2.6 The ACE usage assignment algorithm

Therefore, to fix this inconsistency, the virtual capacity needs be updated dynamically. In

FastRoute3.0, it is updated at the end of each maze routing iteration.

The update method is presented in equation 2 and 3. Existing overflow oe is calculated

as the difference between edge usage ue and real edge capacity rce. Virtual capacity will be

monotonically decreased for the edges that are consistently congested.

However, we could notice that the virtual capacity reduction procedure is irreversible and

the capacity is continually lost. So it’s highly possible that more and more extra wirelenth

will be created by the edges with very small virtual capacity, even though some edges are not

congested at all. As a result, we apply virtual capacity increase if the edge usage is below real

edge capacity(oe is less than 0). In equation 3 the augmenting factor F is set to be 0.85 by

experiment.

oe = ue − rce ∀e (2.2)

www.manaraa.com

18

vce =


vce − oe if oe ≥ 0

vce − F × oe if oe < 0
(2.3)

Virtual capacity technique is effective in overflow reduction. Table 2 compares the two

modes(with and without virtual capacity) on seven routable ISPD07 global routing benchmarks.

Table 2.2 Comparison of different modes on 7 routable 3D version ISPD07 benchmarks

mode1 mode2
name wlen cpu wlen cpu

(e5) (sec) OF (e5) (sec) OF

adaptec1 55.1 302 0 / 1800 42
adaptec2 53.6 38 0 / 1800 312
adaptec3 133 249 0 132 639 0
adaptec4 122 54 0 122 77 0
adaptec5 161 682 0 / 1800 436
newblue1 48.2 316 0 / 1800 1348
newblue2 76.3 24 0 76.2 36 0

In the table, mode 1 utilizes virtual capacity in maze routing and mode 2 is traditional maze

routing, which switches off virtual capacity technique. Maze routing with virtual capacity

apparently shows much better performance in terms of congestion reduction and runtime.

Traditional maze routing could only finish routing 3 benchmarks. Note that the runtime is

limited to be within 30 minutes.

Quality Improvement Techniques

In this section, we will present another two simple but effective techniques: (1) via aware

maze routing; (2) adaptive maze function.

Via aware maze routing

In FastRoute3.0, almost about half of the vias are generated by routing bends. To suppress

the number of vias, via cost is incorporated into the maze routing cost function. During the

dijkstra expansion, we record the predecessor of current grid position. If the new expansion

causes any routing bends, via cost is added to the maze routing cost.

www.manaraa.com

19

coste = coste + viacost (2.4)

Table 2.3 Comparison of via aware maze routing and via ignored maze routing on 7 routable
3D version ISPD07 benchmarks

via ignored maze routing via aware maze routing
name cpu cpu

#via (sec) OF #via (sec) OF

adaptec1 2007K 293 0 1843K 302 0
adaptec2 2033K 35 0 1989K 38 0
adaptec3 3848K 238 0 3600K 249 0
adaptec4 3306K 51 0 3287K 54 0
adaptec5 5667K 672 0 5489K 682 0
newblue1 2425K 312 0 2314K 316 0
newblue2 3009K 21 0 2992K 24 0

In table 3 we compare the via aware maze routing and via ignored maze routing on seven

routable ISPD07 3D benchmarks. We could observe that the extra via cost could effectively

remove over 3% 3D vias with 2% increase of runtime.

Adaptive Maze Function

The adaptive maze routing cost function is presented in equation 5. In the function. k

is the coefficient controlling the function curve slope when ue is below ce. k is adaptively

adjusted in different maze routing phases. In the initial phase, the k is set small to preserve

good wirelegnth. Normally in the first few iterations, many nets need ripup and reroute. If

a large k coefficient is applied, excessive routing wires would be rerouted with huge detour.

While in the final stage of maze routing, the cost function curve is made steep to aggressively

drive down the residual overflow. There are three other coefficients in the function: M is the

cost when ue is equal to ce. S determines the slope when ue is over ce. H is the cost height

which is increased each maze routing iteration. The parameters are experimentally determined.

www.manaraa.com

20

coste =


1 + H/(1 + exp(−k(ue − ce))) if 0 < ue ≤ ce

1 + M + S × (ue − ce) if ue > ce

(2.5)

Results and Discussion

FastRoute3.0 is implemented in C, and all the experiments are performed on one 2.4Ghz

Intel processor with 4GB of RAM. FLUTE [26] is utilized to generate RSMT. We demonstrate

FastRoute3.0’s performance by running three benchmark suites: ISPD98 benchmarks [20], 3D

version of ISPD07 global routing contest benchmarks [28] and 3D version of ISPD08 global

routing contest benchmarks [29]. The benchmark statistics are shown in table 4.

ISPD98 benchmarks

Table 5 shows the FastRoute3.0’s performance for ISPD98 benchmarks. We make compar-

ison with recently published academic global routers: NTHU-R, BoxRouter 2.0, Archer, FGR,

FastRoute2.0 and BoxRouter. The results are quoted from [12], [10], [9], [11], [24] and [6] re-

spectively. First, the result shows that FastRoute3.0 is able to route through all the benchmarks

without any overflow. Second, FastRoute3.0 achieves good runtime. It can finish routing all 10

benchmarks within 15 seconds on our platform. Among all quoted global routers, FastRoute2.0

achieves fastest runtime. But it fails to generate congestion free solutions for ibm01, ibm04 and

ibm09. Third, the total wirelength is comparable with Archer, NTHU-R, FGR and BoxRouter

2.0, which is 2.26% and 1.96% better than FastRoute2.0 and BoxRouter.

3D version of ISPD07 benchmarks

Table 6 shows routing results on 3D version of ISPD07 global routing contest benchmarks.

As shown in table 4, they are much harder in routing complexity and larger in grid size. We

compare FastRoute3.0 with recently published global routers: FGR [11], MaizeRouter [27],

BoxRouter 2.0 [10], FastRoute2.0 [24], Archer [9] and NTHU-R [12]. The first three routers

www.manaraa.com

21

Table 2.4 Experimental benchmarks statistics

#Routed Max Avg
Name Grids #Nets Nets Deg Deg

ibm01 64×64 11.5k 9.1k 37 3.8
ibm02 80×64 18.4k 14.3k 126 4.4
ibm03 80×64 21.6k 15.3k 49 3.6
ibm04 96×64 26.2k 19.7k 41 3.4
ibm06 128×64 33.4k 25.8k 34 3.8
ibm07 192×64 44.4k 34.4k 22 3.8
ibm08 192×64 47.9k 35.2k 65 4.3
ibm09 256×64 50.4k 39.6k 38 3.8
ibm10 256×64 64.2k 49.5k 32 4.2

adaptec1 324×324 219k 177k 340 4.2
adaptec2 424×424 260k 208k 153 3.9
adaptec3 774×779 466k 368k 82 4.0
adaptec4 774×779 515k 401k 171 3.7
adaptec5 465×468 867k 548k 121 4.1
newblue1 399×399 332k 271k 74 3.5
newblue2 557×463 463k 374k 116 3.6
newblue3 973×1256 552k 442k 141 3.2

bigblue1 227×227 283k 197k 74 4.1
bigblue2 468×471 577k 429k 260 3.5
bigblue3 555×557 1.12M 666k 91 3.4
bigblue4 403×405 2.23M 1.13M 129 3.7
newblue4 455×458 636k 531k 152 3.6
newblue5 637×640 1.26M 892k 258 4.1
newblue6 463×464 1.29M 835k 123 3.8
newblue7 488×490 2.64M 1.65M 113 3.6

www.manaraa.com

22

T
ab

le
2.

5
C

om
pa

ri
so

n
of

Fa
st

R
ou

te
3.

0,
an

d
pu

bl
is

he
d

gl
ob

al
ro

ut
er

s
on

IS
P

D
98

B
en

ch
m

ar
ks

.

Fa
st

R
ou

te
3.

0
N

T
H

U
-R

[1
2]

B
ox

R
ou

er
2.

0
[1

0]
F
G

R
[1

1]
A

rc
he

r
[9

]
Fa

st
R

ou
te

2.
0

[2
4]

B
ox

R
ou

te
r

[6
]

na
m

e
cp

u
cp

u
cp

u
cp

u
cp

u
cp

u
cp

u
O

F
w

le
n

(s
ec

)
O

F
w

le
n

(s
ec

)
O

F
w

le
n

(s
ec

)
O

F
w

le
n

(s
ec

)
O

F
w

le
n

(s
ec

)
O

F
w

le
n

(s
ec

)
O

F
w

le
n

(s
ec

)

ib
m

01
0

64
22

1
0.

64
0

63
32

1
4.

17
0

62
65

9
33

0
63

33
2

10
0

64
38

9
11

31
68

48
9

0.
72

10
2

65
58

8
8

ib
m

02
0

17
22

23
0.

85
0

17
05

31
7.

44
0

17
11

10
36

0
16

89
18

13
0

17
18

05
25

0
17

88
68

0.
93

33
17

87
59

34
ib

m
03

0
14

67
53

0.
49

0
14

65
51

5.
86

0
14

66
34

18
0

14
64

12
5

0
14

67
70

10
0

15
03

93
0.

60
0

15
12

99
17

ib
m

04
0

17
01

46
2.

70
0

16
82

62
13

.6
1

0
16

72
75

11
6

0
16

71
01

29
0

16
99

77
24

64
17

50
37

1.
88

30
91

73
28

9
24

ib
m

06
0

27
94

71
1.

15
0

27
86

17
12

.7
5

0
27

79
13

47
0

27
76

08
6

0
27

88
41

23
0

28
49

35
1.

36
0

28
23

25
33

ib
m

07
0

36
90

23
1.

68
0

36
62

88
15

.8
9

0
36

57
90

86
0

36
61

80
18

0
37

01
43

25
0

37
51

85
1.

60
53

37
88

76
51

ib
m

08
0

40
59

35
1.

82
0

40
51

69
13

.1
7

0
40

56
34

90
0

40
47

14
18

0
40

45
30

42
0

41
17

03
2.

36
0

41
50

25
93

ib
m

09
0

41
49

13
1.

67
0

41
54

64
11

.5
9

0
41

38
62

27
3

0
41

30
53

20
0

41
42

23
37

3
42

49
49

1.
92

0
41

86
15

64
ib

m
10

0
58

28
38

3.
61

0
58

07
93

33
.7

2
0

59
01

41
35

2
0

57
87

95
92

0
58

38
05

45
0

59
56

22
2.

79
0

59
31

86
95

T
ot

al
0

26
06

K
14

.6
1

0
25

95
K

11
8.

20
0

26
01

K
10

51
0

25
85

K
21

1
0

26
04

K
24

2
98

26
65

K
14

.1
6

49
7
26

57
K

41
9

N
or

m
/

1
1

/
0.

99
6

8.
09

/
0.

99
8

72
.9

4
/

0.
99

2
14

.4
4

/
1

16
.5

6
/

1.
02

3
0.

97
/

1.
02

0
28

.6
8

www.manaraa.com

23

0 5 10 15 20 25
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Overflow Reduction over Iterations

Maze Routing Iteration

T
ot

al
 O

ve
rf

lo
w

adaptec1
adaptec2
adaptec5

Figure 2.7 FastRoute3.0 overflow reduction during maze routing iteration.

are the winners of the 2007 ISPD global routing contest [28]. Speaking of final overflow, Fas-

tRoute3.0 is able to complete 7 benchmarks without any congestion. Noticeably, FastRoute3.0

successfully route through newblue1, which is not routable by any of the referred routers.

For the unroutable one, newblue3, FastRoute3.0 produces the solution with lowest overflow.

Secondly, in order to show FastRoute3.0’s strong point on runtime, we run FGR 1.1 on our

platform. The total runtime added together is around one hour, which is 64× faster than FGR

1.1. The runtime of Archer is also reported. From the literally quoted results [9], FastRoute3.0

is 9× faster. Note that Archer is performed on an Intel Xeon 3.60Ghz processor. Considering

the wirelength, the reported results are calculated by the ISPD07 cost(segment wirelength plus

three times of via number). FastRoute3.0 is comparable with all the winners of the contest,

but it is much better than FastRoute2.0 with over 50% improvement. We also investigate the

convergence of our router. Figure 8 shows that the total overflow of adaptec1, adaptec2, and

adaptec5 goes down in logarithmical order and the required maze iteration is only around 20.

www.manaraa.com

24

T
ab

le
2.

6
C

om
pa

ri
so

n
of

Fa
st

R
ou

te
3.

0,
an

d
pu

bl
is

he
d

gl
ob

al
ro

ut
er

s
on

3D
ve

rs
io

n
of

IS
P

D
07

gl
ob

al
ro

ut
in

g
co

nt
es

t
be

nc
hm

ar
ks

Fa
st

R
ou

te
3.

0
F
G

R
1.

1
[1

1]
A

rc
he

r
[9

]
B

ox
R

ou
te

r2
.0

[1
0]

M
ai

ze
R

ou
te

r
[2

7]
Fa

st
R

ou
te

2.
0

[2
4]

na
m

e
w

le
n

cp
u

w
le

n
cp

u
w

le
n

cp
u

w
le

n
w

le
n

w
le

n
O

F
(e

5)
(m

in
)

O
F

(e
5)

(m
in

)
O

F
(e

5)
(m

in
)

O
F

(e
5)

O
F

(e
5)

O
F

(e
5)

ad
ap

te
c1

0
92

5
0

88
.5

34
5

0
11

4
87

0
92

0
10

0
12

2
24

9
ad

ap
te

c2
0

93
.4

1
0

90
32

0
11

3
23

0
94

0
98

50
0

24
4

ad
ap

te
c3

0
20

5
4

0
20

0
20

0
0

24
4

51
0

20
7

0
21

4
0

52
3

ad
ap

te
c4

0
18

8
1

0
17

9
29

0
22

2
12

0
18

6
0

19
4

0
46

9
ad

ap
te

c5
0

27
1

11
0

26
0

74
8

0
33

4
24

8
0

27
0

0
30

5
96

80
70

8
ne

w
bl

ue
1

0
94

.5
5

31
4

94
10

83
49

4
11

6
50

40
0

92
.9

13
48

10
2

19
34

24
8

ne
w

bl
ue

2
0

13
6

1
0

12
9

9
0

16
7

7
0

13
5

0
14

0
0

38
0

ne
w

bl
ue

3
31

63
4

18
2

36
45

45
4

16
4

15
13

31
92

8
19

9
16

3
38

95
8

17
2

32
58

8
18

4
34

23
6

44
3

www.manaraa.com

25

T
ab

le
2.

7
C

om
pa

ri
so

n
of

Fa
st

R
ou

te
3.

0,
an

d
IS

P
D

08
gl

ob
al

ro
ut

in
g

co
nt

es
t

re
su

lt
s

F
R

3.
0

N
T

H
U

-R
[2

3]
N

T
U

gr
[2

3]
F
R

3.
0c

[2
3]

B
ox

R
ou

te
r

[2
3]

F
G

R
[2

3]
na

m
e

w
le

n
cp

u
w

le
n

cp
u

w
le

n
cp

u
w

le
n

cp
u

w
le

n
cp

u
w

le
n

cp
u

O
F

(e
5)

(m
in

)
O

F
(e

5)
(m

in
)

O
F

(e
5)

(m
in

)
O

F
(e

5)
(m

in
)

O
F

(e
5)

(m
in

)
O

F
(e

5)
(m

in
)

ad
ap

te
c1

0
55

.2
5

0
53

.5
8

0
56

.1
5

0
55

.5
2

0
53

.8
20

0
54

.1
35

ad
ap

te
c2

0
53

.7
1

0
52

.3
2

0
53

.4
1

0
53

.1
1

0
52

.7
3

0
52

.6
14

ad
ap

te
c3

0
13

3
4

0
13

1
8

0
13

4
5

0
13

3
2

0
13

2
27

0
13

2
55

ad
ap

te
c4

0
12

3
1

0
12

2
2

0
12

3
2

0
12

2
1

0
12

2
7

0
12

2
17

ad
ap

te
c5

0
16

1
11

0
15

6
17

0
15

9
17

0
16

1
5

0
15

7
31

0
15

7
11

0
ne

w
bl

ue
1

0
48

.2
5

0
46

.5
5

6
50

.3
11

50
76

49
13

44
47

12
41

8
46

.8
14

12
ne

w
bl

ue
2

0
76

.3
1

0
75

.7
1

0
77

.4
1

0
76

.2
1

0
75

.9
2

0
75

.8
4

ne
w

bl
ue

33
16

34
11

0
36

31
45

4
10

6
12

9
31

10
6

18
0

80
9

31
65

0
10

9
31

32
40

4
10

9
13

77
34

85
0

10
6

14
27

bi
gb

lu
e1

0
59

.5
7

0
56

.3
10

0
57

.8
14

0
58

.3
4

0
57

19
0

57
.3

70
bi

gb
lu

e2
0

98
.8

16
0

90
.6

10
0

97
.2

26
4

14
2

98
.2

11
0

90
.4

39
0

91
.4

23
8

bi
gb

lu
e3

0
13

2
2

0
13

1
4

0
13

6
5

0
13

2
3

0
13

1
6

0
13

2
88

bi
gb

lu
e4

15
6

24
4

35
18

2
23

1
12

6
18

8
24

3
41

3
20

6
24

3
41

47
2

23
2

87
7

41
4

23
2

14
25

ne
w

bl
ue

4
15

4
13

7
17

15
2

13
0

67
14

2
14

4
11

18
22

6
13

6
10

20
0

12
9

13
04

26
2

13
0

14
20

ne
w

bl
ue

5
0

24
0

11
0

23
2

14
0

24
6

28
0

24
1

5
0

23
3

28
0

23
3

16
6

ne
w

bl
ue

6
0

18
6

10
0

17
7

14
0

18
6

16
0

18
7

4
0

18
0

30
0

18
0

10
3

ne
w

bl
ue

7
10

8
36

1
16

0
68

35
4

14
1

31
0

37
2

14
46

58
8

35
9

19
0

20
8

35
1

14
12

14
58

35
0

14
34

www.manaraa.com

26

3D version of ISPD08 benchmarks

In the ISPD 2008 global routing contest, 8 benchmarks are newly released. We evaluate

FastRoute3.0’s performance on the new benchmarks in table 7. The comparison is made with

top 5 contest winners: NTHU-R, NTUgr, FastRoute3.0c 1, BoxRouter 2.0 and FGR. The

contest results are obtained by running each submitted binary on a machine with up to four

2.8Ghz AMD processors[23]. First of all, in terms of overflow, FastRoute3.0 finishes routing 12

out of 16 benchmarks, which is the same as the best known results. Second, the total runtime

added together is the second smallest. Although FastRoute3.0c achieves fastest runtime, it fails

to route through newblue1 and bigblue2. Besides, NTUgr and FastRoute3.0c utilize multi-core

programming, hence their single thread runtime would be slower. The runtime comparison may

not be very accurate as the contest binaries are still not publicly available. Here we only want

to demonstrate the runtime advantage of our router, which is at least comparable with the

contest winners. Third, the ISPD08 wirelength cost(segment wirelength plus number of via) is

on the same level with the others. It indicates that FastRoute3.0 doesn’t sacrifice wirelength

for achieving good runtime.

Conclusion

In this paper, we have proposed FastRoute3.0, a fast and high quality global router with

special emphasis on overflow reduction. The newly introduced technique is virtual capacity,

which is used to guide the global router in maze routing stage out of local optimal solutions.

FastRoute3.0 generates high quality solutions for ISPD98, ,ISPD07 and ISPD08 benchmark

suites. But due to the fast growing problem size and degree of routing complexity, our future

work will focus on two aspects. First, we will continue to improve FastRoute 3.0’s routability

and runtime. Second, we will try to apply it in earlier physical design stage to produce routing

friendly placement.

1FastRoute3.0c is our contest version

www.manaraa.com

27

CHAPTER 3. CROP: Fast and Effective Placement Refinement for

Routability

A paper submitted to IEEE Transactions on Computer-Aided Design

Yanheng Zhang and Chris Chu

Abstract

Routability is becoming more and more challenging as the design feature continues to

decrease. Previous routability-driven placement techniques are often tightly coupled with the

underlying placers and they cannot be easily integrated into various placement tools.

In this paper, we propose CROP (Congestion Refinement of Placement) for improving

mixed-size placement solutions. CROP is independent of any placer. It is imported with

any legalized placement solution and relocates the modules to improve routability without

significantly disturbing the original placement solution.

CROP interleaves a congestion-driven module shifting technique and a congestion-driven

detailed placement technique. Basically the shifting technique targets at better allocating the

routing resources. Shifting in each direction can be formulated as a linear program (LP) for

resizing each cell in global routing grid (i.e., G-Cell). Instead of solving the computationally ex-

pensive LP, we discover that the LP formulation could be relaxed and solved by a very efficient

longest-path computation. Then the congestion-driven detailed placement technique is pro-

posed to better distribute the routing demands. Congestion reduction is realized by weighting

the half-perimeter wirelength (HPWL) with congestion factor during detailed placement.

Our tool is capable of handling any mixed-size placement benchmark with movable and/or

fixed macro blocks. In order to better analyze its performance, two sets of benchmarks: ISPD-

www.manaraa.com

28

GR (ISPD05/06 derived global routing benchmkars) and ISPD-DR (ISPD05/06 derieved de-

tailed routing benchmarks) are developed. The experimental results show that CROP effec-

tively alleviates the congestion for unroutable placement solutions in short runtime for different

placers.

Introduction

The success of routing is critical in VLSI design flow. With the ever decreasing feature

size, the routability issue has become more and more complicated. Nowadays, the mixed-size

SOC contains up to millions of standard cells and thousands of big macros in one single design.

The existence of big macros and large problem size make the routability issue more and more

challenging.

In traditional design flow, routing and placement are treated as independent stages. In

the placement stage, typically, HPWL is set as primary objective for optimization. Never-

theless, the HPWL optimization during the placement stage may lead to a hard-to-route or

even unroutable solution. It is desirable to integrate routing consideration during placement.

Actually placement is an early and more flexible stage for improving routability. The shifting

and relocating of modules could effectively produce much higher QoR for various design objec-

tives including routability. Therefore, congestion-driven placement techniques received much

attention.

There have been many works proposed for routability-driven placement. In general, previous

techniques could be categorized into four groups. The first group incorporates routability

components into placement optimizing objective. Spindler and Johannes [30] proposed RUDY

congestion estimation technique and modified the density term to contain both the routing

density and module density. In [31], Jiang et al. applied Lagrangian relaxation to relax the

routability constraints. Similarly, Tosta et al. [32] integrated the wire density term into the

analytical placement framework. The second group applies implicit or explicit White Space

Allocation (WSA) technique inside or after the placement flow. Yang et al. [33] proposed three

WSA methods and integrated one of them in the detailed placement flow of Dragon. mPL-R

www.manaraa.com

29

with WSA[34] distributed the white space by adjusting the cut-lines of hierarchically sliced

placement based on the available white space and congestion. In [35], the authors proposed

inflating the cells inside the congested region, which is an implicit manner for allocating white

space. The third group guides placement by global routing. IPR[36] integrated FastRoute2.0

[8] into FastPlace[37] and performed full global routing to guide the placement flow. The

fourth group mixes some of the above three features. For instance, ROOSTER[38] proposed to

optimize RSMT in their global placement objective and apply WSA in their detailed placement

flow.

In this work, we propose a fast and effective mixed-size placement refinement tool called

CROP for routability improvement. CROP interleaves congestion-driven module shifting tech-

nique and congestion-driven detailed placement technique. Both techniques are guided by

congestion information obtained by global routing. The congestion-driven shifting technique

targets at better allocating the routing resources. It is achieved by adjusting the boundary of

each G-Cell and shifting the modules according to the new G-Cell shape. Figure 3.1 illustrates

the basic idea. In the figure, the G-Cell has insufficient capacity for accomodating the rout-

ing demands. Since the global routing capacity is linearly related to the length of the G-Cell

boundary. If the G-Cell is enlarged proportional to the demand of routing tracks, theoretically

no routing overflow would occur. We will show that the resizing of G-Cell can be formu-

lated as two linear programs (LPs) for vertical and horizontal shifting respectively. Instead of

solving the computational expensive LP, we relax the LP and solve it by an efficient longest-

path computation, which is the major factor contributing to our fast runtime when shifting

the modules. After performing module shifting, we will legalize the placement solution. Then

we will apply our second technique, the congestion-driven detailed placement (DP) to probe

better routability. It aims at better distributing routing demands. Congestion reduction is

realized by weighting the HPWL with a congestion coefficient during detailed placement. The

Shifting-Legalization-DP procedure forms one iteration of refinement. We will call the refine-

ment repeatedly until the solution is good enough. Practically only a small number of iterations

(usually 2-3) is sufficient to achieve good routability.

www.manaraa.com

30

G-Cell
Resizing

Congested

Less than
minimum space

Equal to
minimum space

Figure 3.1 Basic idea of congestion-driven module shifting.

CROP is a fast and effective refinement tool for mixed-size placement solution with several

nice properties. First, CROP is independent of any placer. Previous congestion-driven tech-

niques are very tightly coupled with the underlying placer. Their proposed methods cannot

be easily integrated into various placement tools. Second, CROP shows good performance

in improving the routability. The difference of our model of module shifting from previous

works (e.g., mPL-R+WSA[34]) is that ours is more refined. Instead of shifting the cut-lines

of a hierarchically sliced layout, CROP shifts the boundary of each G-Cell. Moreover, previ-

ous techniques usually lump vertical and horizontal congestion together. Yet our congestion

shifting model differentiates the vertical and horizontal directions. Third, CROP runs very

fast. For instance, the design with 800k modules and 800k nets (adaptec5) takes less than 10

minutes to execute.

In summary, our technical contributions include the introduction of the following:

• A placement routability refinement flow which is independent of any placer and router

• A more refined and directional module shifting model

• A longest-path computation method aiding fast runtime of module shifting

• A congestion-driven global swap technique by weighting HPWL with congestion.

www.manaraa.com

31

We apply CROP to refine placement solutions obtained from various placers: FastPlace

3.1[39], NTUplace3[40], mPL6[41] and R-NTUplace3[31]. We set up ISPD-GR and ISPD-

DR benchmarks to verify its performance. The results reveal that CROP effectively reduces

congestion within a very short runtime.

The rest of paper is organized as follows: Section II provides preliminaries on global routing,

the general flow of CROP and the methodology for performing congestion estimation. In

Section III, we introduce the details of congestion-driven module shifting technique. Section

IV explains congestion-driven detailed placement. In Section V, we make comparison for results

on ISPD-GR and ISPD-DR benchmarks and conclusion will be made in Section IV.

Materials and Methods

Preliminaries

In this section we will introduce some terminology and present the overview of CROP. We

will also talk about the congestion estimation method that guides CROP.

Motivation

The placement region is partitioned into a set of G-Cells to perform global routing. The G-

Cells are illustrated in Figure 3.2. The global routing will be performed across the boundaries

between adjacent G-Cells. In the global routing grid graph, each G-Cell will be represented by

a node and each G-Cell boundary will be represented by an edge between two nodes, which

is referred to as global routing edge. If the usage Ue is over capacity Ce for any edge e, the

overflow is calculated as Oe = Ue−Ce. If there is no congested edge, then the design is routable

in global routing stage.

To improve the routability, we could adopt two methods in general. The first method is

to allocate more routing resources, or in other words, to increase global routing capacities.

As is notable, the global routing edge capacity is proportional to the length of the G-Cell

boundary. It can be easily calculated by dividing the length of boundary over minimum pitch

www.manaraa.com

32

hTile
=10

w=1 s=1

(a) (b)

Figure 3.2 An illustration of G-Cells and global routing across G-Cell boundary.

size. For instance, in Figure 3.2, the highlighted G-Cell boundary has global routing capacity of

5 (boundary length is 10, minimum pitch is 2.)1 Due to the linear relationship between G-Cell

boundary length and capacity, it motivates our congestion-driven module shifting technique by

reshaping each G-Cell for better allocating routing resources (e.g., adjust the boundary length

for each G-Cell). The second method is to reduce and relocate routing demands. After module

shifting, a step to regain the degraded wirelength is necessary to prevent extensive elongation of

nets. We thus proposed the congestion-driven detailed placement to compensate the wirelength

loss after the module shifting stage. Besides reclaiming the wirelength, we further move routing

demands away from congested regions by applying congestion aware global swap. Hence, CROP

considers both resource allocating and demand reduction, and the details will be fully discussed

in Section III and Section IV respectively.

CROP Flow

The flow of CROP is illustrated in Figure 4.3. The imported design should have been

placed and legalized. The first major step is congestion-drive module shifting. As discussed in

last paragraph, it is applied to adjust the position of modules for better resource allocation.
1Capacity calculation can be complicated in real design and varies depending on many different factors. Here

is our simple capacity model for motivation

www.manaraa.com

33

Congestion-Driven
Module Shifting

Congestion-Driven
Detailed Placement

Vertical Shifting

Horizontal Shifting

Vertical Shifting

Horizontal Shifting

Congestion-Driven
Global Swap

Overflow
Improved?

Y

N

Input
Legalized
Placement

Output
Legalized
Placement

Legalization

Vertical Swap

Local Reordering

Figure 3.3 Algorithm flow.

www.manaraa.com

34

The goal is achieved by resizing G-Cells. The congestion-driven module shifting contains four

substeps. Each substep is performed either on X or Y direction to optimize the solution from

different direction iteratively. When one direction is processed, let’s say X, we will fix the

module postions in Y direction. After a number of rounds of module shifting (2 rounds in Fig-

ure 4.3), the post-shifting placement solution will be legalized. Then congestion-driven detailed

placement will be called to compensate the wirelength loss and further improve the routability.

The mentioned procedure will be repeatedly called until the solution gets stable. Normally it

only takes two to three iterations for obtaining considerable routability improvement.

Congestion Estimation

To improve routability, we need fast and accurate congestion information of the placement

solution. It is a very important component of congestion-driven placement. There are vari-

ous algorithms proposed for estimating congestion. Previous congestion evaluation could be

roughly grouped into two categories, bounding box based or global routing based. Bounding

box based approach seeks to estimate the routing usage in a probabilistic manner inside the

bounding box. While the global routing based method implement an efficient global router to

test the routability. Although runs faster, the bounding box method is an inaccurate way for

measuring congestion since no routing structure is actually constructed. The global routing

based estimation, on the other hand, build tentative routing topology and implement simple

pattern routing (e.g., L/Z shaped pattern routing). Hence the global routing based estimation

is also referred to as topology based estimation.

In this paper, we apply coarse global routing result as a congestion reporter. In addition

to the simple L/Z pattern routing, we incorporate a fast and more accurate 3-bend routing.

The technique was proposed in FastRoute 4.0[42]. It has been shown in [42] that the time

complexity of 3-bend routing is O(mn) for a net spanning a region of m× n G-Cells, which is

as fast as Z routing. Besides the fast computing time, it is more flexible in choosing routing

paths with the ability for making necessary detours over congested areas. The routing output

will be closer to the final routing solution when iterative rip-up and reroute is adopted.

www.manaraa.com

35

In the flow of our tool, both congestion-driven module shifting and congestion-driven de-

tailed placement are guided by global routing. It is applied before each round of vertical

shifting, horizontal shifting and congestion-driven global swap.

Congestion-Driven Module Shifting

In this section, we will discuss the congestion-driven module shifting method for moving

standard cells. In order to shift the modules with congestion awareness, we first shift the

boundary of each G-Cell. The module positions are updated based on the new G-Cell shape

and location. In the following subsections, we first formulate LPs of one-dimensional shifting

for resizing each G-Cell in X or Y direction respectively. Then we show that the LPs can be

relaxed and solved by a more efficient longest-path computation. Module updating method

and our approach to handle flexible or fixed big macros will also be discussed in details.

Resizing G-Cells by Linear Programming

We will formulate linear program for resizing G-Cells to accomodate routing usage. To

facilitate the formulation, let’s first assume each module (Mk) is a standard cell (with smaller

area than G-Cell) for the time being.

Figure 3.4 Notation for the LP formulation.

We first partition the placement region into m×n G-Cells. Let Bi,j represents each G-Cell,

where i (i ∈ {1, ...,m}) denotes the row and j (j ∈ {1, ..., n}) denotes the column. We introduce

coordinate variables for each of the G-Cell boundary. For Bi,j , let xi,j and xi,j+1 denote the

www.manaraa.com

36

x-coordinate for left boundary and right boundary respectively. And likewise yi,j and yi+1,j

denote the y-coordinate for bottom boundary and top boundary respectively. There are

m×(n+1) x-variables and (m+1)×n y-variables. We use ul
i,j , ur

i,j , ub
i,j and ut

i,j to represent the

global routing usage across left, right, bottom and top boundary for Bi,j . We also introduce H,

W , hT ile and wTile to denote height of placement region, width of placement region, original

height of G-Cell and original width of G-Cell.

Without loss of generality, we only consider the horizontal shifting of vertical boundaries.

Similar equations can be derived for the vertical shifting case.

max : σ

s.t.

xi,j+1 − xi,j ≥ σ ×MAX(f−1(ub
i,j), f

−1(ut
i,j)) ∀i, j (3.1)

0 ≤ σ ≤ 1 (3.2)

xi,j+1 − xi,j ≥
∑

k∈Bi,j
area(Mk)

hT ile
∀i, j (3.3)

|xi,j − xi+1,j | ≤ C ∀i, j (3.4)

0 ≤ xi,1 ∀i (3.5)

xi,n+1 ≤ W ∀i (3.6)

Then we will explain each of the constraints.

1. Routability Constraints (Equations 1 and 2)

As we mentioned in Section 2, routing capacity is proportional to the length of G-Cell

boundary. Ideally, if each G-Cell is sufficiently large, there would be no congestion because

each G-Cell boundary is capable of holding the crossing routing wires. In the routability

constraints, xi,j+1 − xi,j represents the width of Bi,j . On the right hand side, f−1(u) is

the inverse function of f(l), which maps G-Cell boundary length l to routing capacity.

www.manaraa.com

37

So f−1(u) is the function translating the given usage to sufficient length of boundary. In

particular, f(l) is given in Equation 7.

f(l) = gB × (
l

p
× gL +

l

p
× (layer − 1)) (3.7)

p is wire pitch (width plus spacing), layer represents number of 3D routing layers for

vertical direction. gB is the guard band coefficient and gL is the ground layer reduction

coefficient. Our Length-Capacity model is borrowed from the ISPD07/08 Global Routing

Contest[28] [29].

However, if the placement solution is very congested, the routability constraints may be

too hard to satisfy. In other words, the formulated LP might be infeasible. Therefore

we place a relaxing variable σ in the routability constraints. σ here can be viewed as a

scaling factor over original constraint. The value of σ is bounded between 0 and 1. When

σ is 1, we do not relax the constraints. With smaller σ value, the routability constraints

become less restrictive.

2. G-Cell Area Constraints (Equation 3)

These constraints ensure that each G-Cell has enough space to hold the modules inside.

Otherwise, it would create huge overlaps between modules when the non-congested G-

Cells shrink excessively. In the formulation, since we consider shifting in X direction, the

height of G-Cell is fixed.

3. Movement Constraints (Equation 4)

The input design has already been a legalized placement solution. It is necessary not

to disturb the original placement too much. Hence we introduce movement constraints

to restrict the shifting between adjacent G-Cell boundaries. In the equations, C is a

constant which represents the degree of flexibility of moving adjacent G-Cell boundaries.

In experiment we set C to be 0.5×wTile. Because of the absolute sign, it can be expanded

as follows,

xi+1,j − xi,j ≥ −C ∀i, j (3.8)

xi,j − xi+1,j ≥ −C ∀i, j (3.9)

www.manaraa.com

38

4. Placement Region Constraints (Equations 5 and 6)

Finally, these constraints ensure that all the boundaries should be within the placement

region. Note that the other constraints (e.g., G-Cell area constraints) implicitly guarantee

that xi,j ≤ xi,j+1 for j ∈ {1, . . . , n}.

Longest Path based Solution

The LP is expensive in terms of solving time. Next we will introduce a technique based on

longest path to solve it efficiently.

When we investigate the proposed LP in Section 3.1, we find that if σ is fixed, the LP

becomes a feasibility check problem (only has constraints). Since Equations 1,3,8 and 9 are

all difference constraints, we propose the following strategy to solve the LP. We use an outer

loop which keeps decreasing σ until the LP is feasible. Inside the loop, for a fixed σ, we check

feasibility by longest path computation. If infeasible, the longest path solution will suggests

how σ should be decreased.

Let’s first assume σ is fixed. The feasibility of the constraints can be checked by performing a

longest path computation on a directed graph called G-Cell boundary graph (B-graph) G(V,E).

Each G-Cell boundary associated with xi,j is represented by a vertex vi,j ∈ V . Each difference

constraint in the form xd − xs ≥ Q is represented by a directed edge e ∈ E pointing from vs to

vd with a cost ‖e‖ of Q. To distinguish different edge types, we name Er, Ea and Em for the set

of edges incurred by routability constraints, G-Cell area constraints and movement constraints

respectively. Figure 3.5 illustrates an example of B-graph with the three types of edges. The

longest path distance to vi,j from the vertices associated with the leftmost boundaries of the

placement region is the minimum value of xi,j that satisfies Equations 1,3,5,8 and 9. So the

feasibility of the constraints can be determined by checking whether xj,n+1 ≤ W for all i

(Equation 6).

We observe that the proposed B-graph contains directed cycles. The directed cycles are

caused by movement edges (Em), which are used to control the disturbance of original place-

www.manaraa.com

39

G-Cell
Boundary Routability

Edges
G-Cell Area

Edges

Movement
Edges

Figure 3.5 Convert the G-Cell boundary into B-graph.

ment. However, as suggested by [3] , it’s NP-Complete to find the longest path for a graph

with directed cycles. The neat longest path algorithm cannot be applied in this case.

The issue can be resolved by introducing the diagonal edges Ed to replace the hard-to-handle

movement edges. Diagonal edges are an alternative method of maintaining original placement

solution. Figure 3.6 illustrates the idea. We merge the perpendicular edges (e1 and e2) and

replace e1 with the diagonal edge (e3). Note that here e2 represents the longer one of area

edge and the routability edge. The cost of a diagonal edge is the total cost of the perpendicular

edges, which is to say, ‖e3‖ = ‖e1‖+ ‖e2‖.

e1

e2

e3

Figure 3.6 Replace movement edges with diagonal edges to facilitate longest path computa-
tion.

After replacing the movement edges with diagonal edges, the B-graph has become a DAG.

Now we are able to perform longest path computation. It can be done very effecitvely by

www.manaraa.com

40

one-time scanning of each vertex in B-graph according to the topological order.

Next we will discuss the outer loop for determining the maximized σ to solve the LP. Initially

σ is set to 1. If the resulting longest path length Lp = MAXi=1,...,m(xi,n+1) is larger than W,

we reduce σ to scale the current longest path into placement region, which is the requirment

of placement region constraints. Suppose L represents set of edges along the longest path. We

define the edges that cannot be scaled as hard edges and those scalable edges as soft edges. For

instance, routability edges can alwasy be reduced in magnitude and they are thus soft edges.

Area edges are hard edges due to their inscalability. Diagonal edges, on the other hand, can be

categorized either into soft edges or hard edge based on which component (ErorEa) dominates

(Since ‖Ed‖ = max(‖Ea‖, ‖Er‖)+‖Em‖). Hence, we divide the edges along the longest path L

into two parts: hard edge EL
h = (Ea∪Eh

d)∩L; and soft edge EL
s = (Er∪Es

d)∩L. Lh =
∑

e∈EL
h
‖e‖

and Ls =
∑

e∈EL
s
‖e‖. To scale Lp inside fixed outline W , we have s×Ls + Lh = W . Therefore

s = (W − Lh)/Ls. Each iteration σ will be scaled by a scaling factor s to configure the soft

edges into fixed outline. But we may not be able to compact all paths into fixed outline at one

time. First, other paths may still be longer than W even after scaling. Second, current path

may not be scaled correspondingly based on s. The reason comes from the fact that the diagnal

edges (Ed) have the bound for scaling. They cannot be scaled once the area edge component

(Ea) dominates. Hence the scaling in the outer loop will be performed iteratively until all the

paths fit into the fixed outline (Lp = W). The algorithm terminates in at most m iterations

because xi,n+1 for at least one more i will become less than or equal to W in each iteration. In

practice, it usually takes less than 10 iterations. Figure 3.7 shows our complete algorithm to

solve the LP.

We have discussed the algorithm for solving the resizing problem by longest path based

solutions. And our algorithm assumes xi,1 = 0 ∀ i. However, the potential problem for

such assumption is it will cause the modules to be shifted to the left bound. Please refer to

Figure 3.8, the front curve of spreading G-Cell boundaries under the longest path computation

would be maintained after the scaling. The placement will be compacted excessively for less

congested regions. To resolve this problem, we alternatively assume xi,n+1 = W ∀i, and make

www.manaraa.com

41

Algorithm for solving the LP
Input: B-graph G(V,E)
Output: Maximized σ

begin
σ = 1
while(1)

Perform Longest-path algorithm
Lp = MAX(xi,n+1) ∀i
if(Lp ≤ W)

Break
else

σ = σ × W−Lh
Ls

end while
end

Figure 3.7 The longest path algorithm and iterative scaling for deciding boundary locations

xi,1 ≥ 0 as the feasibility check. We could obtain two sets of x-coordinate result for each G-Cell

boundary, let’s say xl
i,j and xr

i,j . The two sets of solution represent the two extreme cases in

which the design is either packed to left or right. We thus name the two coordinates as valid

range and the valid range will be used in determining the final boundary coordinates. Let Xi,j

denote the original G-Cell boundary coordinate (Xi,j = (j − 1)× wTile). If Xi,j is within the

valid range, it means the resulting packing is not too tight for both cases, and we will not move

the boundaries (xi,j = Xi,j). Otherwise, we move boundaries to the closer of xl
i,j or xr

i,j .

xi,j =


xr

i,j if Xi,j > xr
i,j

xl
i,j if Xi,j < xl

i,j

Xi,j otherwise

(3.10)

Module Relocation

After adjusting each G-Cell boundary, the modules inside each G-Cell will be shifted ac-

cordingly. CROP updates the module location by maintaining the raio of distance to both

boundaries before and after G-Cell resizing. As illustrated in Figure 3.9, L1 and R1 are the

www.manaraa.com

42

Fixed Outline

Figure 3.8 Problem of compacting design to left

original distances between the module to left boundary and right boundary respectively. Sim-

ilarly L2 and R2 are the distances after G-Cell resizing. The module will be relocated to the

place where condition L1/R1 = L2/R2 is met.

Figure 3.9 Module shifting illustration.

Macro Block Handling

In the traditional design flow, pre-placed blockages and IP-cores are first placed and their

positions become fixed. Then the standard cells and movable macros are filled within the ”gaps”

between the blockages. Usually, certain amount of routing resources will be reserved for internal

routing. The existence of big macros makes the routability issue more complicated. Hence we

need to extend our method of handling standard cells to handling mixed-size placement solution.

www.manaraa.com

43

Movable Macros In the case when the macros are movable, they can be legally relocated

to the place of better routability. We apply a methodology similar to the one that we use to

handle standard cells. But before we do that, we need be aware that macro blocks might cover

multiple G-Cells, it is unlikely to shift them based on one G-Cell resizing. In other word, during

the shifting, G-Cells covered by the macro may not be reshaped uniformly. Different G-Cell

resizing solution might suggest totally different macro relocation. To tackle this challenge, we

merge the covered G-Cells to become a super G-Cell. A macro will thus be repositioned based

on the super G-Cell boundary coordinates. As in Figure 3.10, CROP merges the G-Cells that

are covered or partially covered by the big macro.

After the merging, everything else goes the same way. The B-graph is generated to compute

longest path. In the B-graph, since we merge G-Cells to become the super G-Cell, those

merged cell boundary vertices are also merged or deleted. (The vertices along the super G-

Cell boundary are merged, while the vertices inside the super G-Cell are removed) Similarly,

the merged vertex is termed super vertex. The edge weights in B-graph are also necessarily

updated. For instance, the area edge weight in between two super vertices are set to be

the width of original super G-Cell width. The reason is macro cannot be squeezed, we need

maintain a constant edge weight to accomodate the inside macros. With all the configurations

mentioned, the computation of the longest path is the same as before except the two issues

need be considered for the macro shifting.

1. Reserved Routing Resource

Certain amount of routing resources above big macros need be reserved for internal rout-

ing purpose. This is also referred to as block porosity effect. To cope with block porosity,

we increase the cost of the corresponding routability edges (Er) in B-graph to compensate

the capacity loss. In our experiment, we stick with the porosity reduction ratio used in

generating ISPD07/08 global routing benchmarks.

2. Non-Overlapping Guarantee

Although the overlapping between standard cells is permissible, big macros need be kept

apart from each other. Otherwise, placement solution will be modified significantly if the

www.manaraa.com

44

Figure 3.10 Merging of G-Cells for macro blocks.

legalization process is performed. Therefore, we place additional edges in the B-graph

for guaranteeing the non-overlapping property between big macros. For instance, for

adjacent macros, additional edges will be generated in between for making sure both

parties do not overlap.

Fixed Macros Certain IP-cores and fixed macros are pre-placed on chip considering area,

power, timing issues. In analog designs, there are design constraints that need be respected

for macros such as mirroring constraint (e.g., two blocks are mutually viewed image for a fixed

axis), alignment constraint, distance constraint, etc. It is therefore unallowed for moving the

pre-placed big macros as they may degrade many design specifications and design constraints.

In the above section, we have discussed how to manage movable blocks and how to embed the

movable block consideration into current configuration. But in real designs, there are many

fixed macros. We need incorporate fixed macro mode in order to better cope with complete

mixed-sized placement.

We still incorporate the idea of merging (e.g., merge macro covered G-Cells into a super

G-Cell). When there are fixed macros in the design, we need make sure the corresponding super

G-Cell boundaries not moved during G-Cell resizing. Our methodology is embedded during

construction of B-graph. We mark the super vertices as fixed by a boolean variable and record

www.manaraa.com

45

its original position. These vertices should stay unmoved during shifting. When the algorithm

proceed to a super vertex of fixed macro, and if it cannot be allocated without violating existing

constraints. We detect the longest path to the macro and scale the path accordingly. Note

that we keep the uniform scaling factor over the entire algorithm, which still seek the solution

to the LP problem we originally propose. Figure 3.11 better illustrates the idea. Suppose the

macro B cannot be assigned to the fixed location. And the dotted outline indicates the lowest

position it can be placed. We first obtain the longest path leading to this macro and try to

scale this path such that the macro covered vertices can be assigned to the fixed location. The

detailed algorithm is shown in Figure 3.12. Please note that in some cases we could obtain

very small σ due to fixed macros. In Figure 3.11, for instance, if the congestion between the

two macros are very high (macro A and macro B), and the two macros are very close to each

other, then the scaling of path for the fixed macro can potentially result in very small σ, which

is the objective we try to maximize for the LP (Equations 1 - 6). In this case, the shifting may

become ineffective because small value of σ will affect the magnitude of shifting and thus the

degree of improvement. Then more optimization rounds and larger execution time is expected

for obtaining desired results. We have conducted several experiments for fixed macro mode,

the effectiveness of CROP depends on both the characteristics of the benchmark and the placer

itself. those results will be shown in detail in the experiment section.

Congestion-Driven Detailed Placement

Detailed placement (DP) is commonly applied after global placement to improve HPWL

for legalized placement solution. We develop a congestion-driven DP technique to compensate

the netlength loss during the shifting stage and to further improve the routability. The flow of

our proposed DP is shown in Figure 4.3 which contains congestion-driven global swap, vertical

swap and local reordering. The whole DP flow is based on FastDP[43]. We only make the

global swap step to be congestion-aware. The vertical swap and local reordering are local in

nature and they contribute little to congestion reduction, so we still keep them HPWL targeted

to retrieve netlength.

www.manaraa.com

46

Longest Path
to Macro

After Scaling

A

B

Figure 3.11 Path scaling for fixed macro case.

Congestion-Driven Global Swap for 2-pin Nets

Global swap step seeks to swap modules for improving HPWL based on a greedy pairwise

position exchange. In [43], global swap is the step contributes most to the reduction of HPWL.

As discussed earlier, HPWL could hardly reflect routability, especially when cells are swapped

into highly congested regions. Although HPWL is reduced for this swap, but congestion might

increase as the design becomes more dense. Therefore, we need consider the congestion during

the swap activity. We thus change the swapping evaluation function to incorporate the con-

gestion component. The HPWL is weighted by the congestion factor of αn for net n. Simply

put,

rHPWLn = HPWLn × αn (3.11)

In other word, the global swap is guided by the congestion weighted HPWL. In particular, if

we swap standard cell A with standard cell B, the gain after swapping should be, GainA−B =

www.manaraa.com

47

Algorithm for solving the LP with fixed macros
Input: B-graph G(V,E)
Output: Maximized σ

begin
σ = 1
while(1)

Longest Path:
Perform Longest-path algorithm
foreach fixed super vertex v

if xv ≥ Pv

Detect longest path Lv
p leading to v

σ = σ × Pv−Lv
h

Lv
s

goto: Longest Path
if(Lp ≤ W)

Break
else

σ = σ × W−Lh
Ls

end while
end

Figure 3.12 The longest path algorithm and iterative scaling for design with fixed macros

www.manaraa.com

48

∑
n∈NA

(rHPWLn− rHPWL′
n) +

∑
n∈NB

(rHPWLn− rHPWL′
n). where NA and NB are the

sets of nets that A and B are connecting to. rHPWL′
n is the new cost after tentative swapping.

We will then discuss the way of getting the congestion weight. The straightforward ap-

proach, for instance, is to calculate the average congestion inside the bounding box. But this

method is too rough to be reliable. So alternatively, we incorporate a more accurate model in-

stead of simply lumping congestion together. We enumerate all possible Z routing paths inside

the bounding box and calculate αn by the average congestion along all the paths. Hence,

αn =
wtol

E
=

∑
p∈P

∑
e∈p w(e)

E
(3.12)

In the equation, P is the set of all Z routing paths inside the bounding box. e represents each

global routing edge along path p. E is the total number of global edges for all paths, and w(e)

is the weight of edge e. wtol represents the sum of weight. w(e) is calculated by Equation 13.

If there is overflow, the weight will rise quadratically. If not congested, the weight is set to be

constant to penalize wirelength.

w(e) =


1 if Oe = 0

(Ue/Ce)2 if Oe > 0
(3.13)

Speedup Technique based on Look-up Tables

The proposed method in Section IV-A would be very expensive in terms of runtime, since

we need to add up the edge weights along all Z paths. For a p × q sized 2-pin net bounding

box, the time complexity would be O((p + q)2). In order to speed up the computing of total

weight, we propose a look-up table method. With look-up table, the timing complexity could

be reduced to O(p+q).

Let wtol = wh + wv, where wh is the total weight of horizontal global edges and vice

versa for wv. Without loss of generality, let’s discuss the calculation of wh. Similar results

can be derived for wv. Figure 3.13 illustrates a 2-pin net in global routing grid graph. Let

eh
i,j denotes each horizontal global routing edge in the global routing grid graph. We mark

www.manaraa.com

49

12345

11111

11111

54321

Pin 1

Pin 2

(x1,y1)

(x2,y2)

Figure 3.13 Number of Z routing paths passing through each horizontal global routing edge.

the number of Z routing paths passing through each horizontal global routing edge. Suppose

the coordinates are (x1, y1) and (x2, y2) for pin 1 and pin2 respectively. As suggested by

Figure 3.13, wh = w1+w2+w3, where w1 =
∑x2−1

j=x1((x2− j)×w(eh
y1,j), w2 =

∑y2−1
i=y1+1 w(eh

i,j),

and w3 = (j − x1 + 1)× w(eh
y2,j).

We introduce five m×n tables, T1, T2, T3, T4 and T5. Each entry in the table corresponds

to one grid point in the routing grid graph. The meaning of entry (r, c) for each table is

summeried in Table 3.1.

T1 T1(r,c) =
∑

j={1,...,c−1} w(eh
r,j)

T2 T2(r,c) =
∑

j={c,...,n−1} w(eh
r,j)

T3 T3(r,c) =
∑

j={1,...,c−1}(c− j)× w(eh
r,j)

T4 T4(r,c) =
∑

j={c,...,n−1}(j − c + 1)× w(eh
r,j)

T5 T5(r,c) =
∑

i={1,...,c−1},j={1,...,r} w(eh
i,j)

Table 3.1 Notation of look-up tables.

Based on the notations in Table 3.1, w1 = T4(x2,y1)−T4(x1,y1)− (x2−x1)×T2(x1,y1), w2 =

T3(x1,y2)−T3(x2,y2)−(x2−x1)×T1(x2,y2), and w3 = T5(x2,y2)−T5(x1,y2)−T5(x2,y1) +T5(x1,y1).

With the help of five look-up tables, the computing of wtol can be done very efficiently. Now

the time complexity is O(1).

www.manaraa.com

50

All the proposed tables can be constructed very efficiently by dynamic programming. In

Table 3.2, we also show how dynamic programming is performed. Basically, the computing of

current entry can be broken into subproblems using the value of entry that has already been

computed.

T1 T1(r,c) = T1(r,c−1) + w(eh
r,c)

T2 T2(r,c) = T2(r,c+1) + w(eh
r,c)

T3 T3(r,c) = T3(r,c−1) + T1(r,c)

T4 T4(r,c) = T4(r,c+1) + T2(r,c)

T5 T5(r,c) = T5(r,c−1) + T5(r−1,c) − T5(r−1,c−1) + w(eh
r,c)

Table 3.2 Apply dynamic programming to construct look-up tables.

Multi-pin Nets Handling

We need extend the 2-pin nets calculation to multi-pin nets. Without knowing the exact

routing path and topology, it is impossible to weight the congestion for a multi-pin net with

all potential routing soultions. Hence we derive the multi-pin net weighting model from a

simplified method. Suppose the module has multi-pin connection and the multi-pin net without

the module forms the bounding box B. If the module is inside B, the weighting is ignored.

Otherwise a 2-pin net from the module to the nearest pin in B is introduced. The congestion

weighting of the multi-pin net can thus be converted to a 2-pin net case.

Results and Discussion

All our experiments are performed on a machine with 2.4GHz AMD Opteron processor and

4G of memory. In order to better analyze the performance of CROP, we propose two sets of

benchmarks: ISPD-GR and ISPD-DR. Both benchmark sets are derived from ISPD05/06 [21]

[22] placement contest benchmarks. The ISPD-GR benchmarks evaluate the routability up to

the global routing stage by the total number of overflow. The ISPD-DR benchmarks are detailed

routing benchmarks and an industrial router is applied to report the congestion as well as design

rule violations. In order to test the performance of CROP for the benchmark with fixed macro,

www.manaraa.com

51

we fix all big macros in ISPD-GR and generate Fixed Macro (FM) version of ISPD-GR. There

are totally four placers involved in the experiments. This comprehensive experimental data

could thoroughly investigate the performance of CROP on routability improvement.

Effectiveness of Techniques in CROP

In this subsection we show the effectiveness of our techniques for routability improvement on

two benchmarks of ISPD-GR: adaptec3 and bigblue1 generated by routability-driven NTUplace

(R-NTUplace) [31] in Table 3.3. The purpose is to view the routability improvement during

each execution step. The overflow is the global routing estimation result obtained from the

technique mentioned in Section II-C. We have the following observations:

1. Overall Congestion

The total overflow is consistently improved after each round of shifting.

2. Congestion Overhead

The shifting in one direction will introduce congestion overhead for the other direction.

For instance, when shifting modules in the X direction (to improve vertical overflow),

the horizontal overflow becomes worse. The overhead comes from the extra mismatching

horizontal wirelength. However, in general, the extra overhead is smaller than the gain,

which contributes to the continuing improvement consistently.

3. Legalization Issue

The placement solution during module shifting is not legalized. The congestion data

cannot be fully trusted. Therefore we also show the overflow after congestion-driven

global swap, at which step the design is legalized again. It shows that the congestion

is improved over the original one, which better indicates the effectiveness of congestion

reduction of proposed techniques in CROP.

4. Congestion-Driven Global Swap

The global swap effectively reclaims lost wirelength during the shifting step. The shifting

relocates the modules based on the tentative global routing solutions.(Section II-III).

www.manaraa.com

52

The actually congestion after legalization is worsened. So congestion-driven global swap

is actually an effective and necessary step, which reduce 15% to 25% wirelength in a short

runtime.

adaptec3 bigblue1
H V Total H V Total
o.f. o.f. o.f. Legal? o.f. o.f. o.f. Legal?

Before 53428102804156232 Y 505313440984940 Y
Y shifting 40283103637143920 N 253204562870948 N
X shifting 41168 93149 134317 N 312752152552800 N
Y shifting 34239 96298 130537 N 233063170355009 N
X shifting 37295 90350 127645 N 270251941946444 N

Legalization42548 93122 135670 Y 282232014548478 Y
Global Swap32335 81013 113348 Y 172381709434322 Y

Table 3.3 Congestion reduction in CROP flow.

ISPD-GR Benchmarks

In this subsection we show the full experimental results on the ISPD-GR benchmarks derived

from ISPD05/06 placement benchmarks. We utilize four different public available academic

placers to generate the initial legalized placement solution. And we derive the corresponding

global routing benchmark for the case with CROP and the case without CROP. To keep our

comparison fair and complete, we follow the rules of ISPD07/08 [28] [29] global routing contest

for determining the coefficients such as the block porosity effect etc.

In particular, the initial legalized placement solutions are generated by FastPlace3.1[39],

NTUplace3[40], mPL6[41], and R-NTUplace[31]. In the experiment, FastRoute 4.0 [42] is

utilized to report the global routing results. We have also tried NTHURouter[44] and the two

routers produce similar results. We observe that FastRoute runs comparatively faster and the

adoption could save experimental runtime.

Table 3.2 shows the results in detail. For each placer, we show the routing results before

and after applying our tool. The entry with ”/” means the original placement is routable so

we do not apply CROP. More specifically, before applying CROP, there are 6, 11, 13, and

www.manaraa.com

53

11 unroutable cases for the solutions of FastPlace3.1, NTUplace3, mPL6 and R-NTUplace

respectively. After applying CROP, the number is reduced to 1, 1, 4 and 1. Out of these

benchmarks, newblue3 is proved to be unroutable(more out pins than capacity in a G-Cell).

So newblue3 cannot be reduced to overflow free. From these results, CROP is very effecitve in

congestion reduction.

We also report the CROP execution runtime in Table 3.4. The runtime of our tool is trivial

comparing with original placement runtime. For instance, the total runtime for mPL6 on our

platform is more than 24 hours. While the total execution time of CROP is around one hour.

Noticeably, the routing runtime is also saved considerably. The average speedup depends on

different benchmark and specific placer. From our experiment, we could achieve roughly 6×

speedup on average. The routing runtime improvement suggests the placement solution after

applying CROP becomes easier to route.

Another aspect for evaluating CROP is the routed wirelength. After applying CROP, the

total wirelength are 0.5% better, 1% better, 0.5%worse and 5% better for FP3.1, NTUplace3,

mPL6 and R-NTUplace respectively. Generally speaking, the routed wirelength is on the same

level with original design. But in many cases, we notice the routed wirelength becomes better.

The reason is the new placement solution is easier to route, such that the router does not need

to make huge detours and eventually saves the wirelength.

Fixed Macro Solutions

In order to better evaluate the performance of placement benchmarks with fixed macros,

we create the FM (Fixed Macro) mode of the ISPD-GR benchmarks in which each macro is

fixed. For the sake of runtime, we use global routing as routability checker. We conduct similar

experiments as in Section V-B. In Table 3.4, we show the details of results on the FM mode

of ISPD-GR benchmarks. For each test case, the row marked with ”FM” is the corresponding

benchmark in FM mode. As before, we list the overflow change with and without applying

CROP, the CPU time of CROP, routing runtime and routed wirelength. First, we could observe

that the congestion is consistantly improving. For each experimenting benchmark, the overflow

www.manaraa.com

54

M
e
tr

ic
s

T
o
o
ls

a
1

a
2

a
3

a
4

a
5

b
1

b
2

b
3

n
1

n
2

n
3

n
4

n
5

n
6

w
/
o

/
1
2
6
0

4
/

/
1
8
7
5
5

7
6
9

/
/

/
9
6
4
2

/
4
6

/
F
P
3
.1

w
/

0
0

/
/

0
0

/
/

/
9
0
1
9

/
0

/
F
M

/
0

0
/

/
0

2
9
3

/
/

/
8
9
9
8

/
0

/
w

/
o

2
8
8
5

2
3
6
9

1
6
2
1

1
4
1

/
1
5
8
9
6

1
9
7
9
3

1
5
2
5
9

/
6
0

9
4
4
2

3
3
9
4

/
8

N
T

U
P
la

c
e
3

w
0

0
0

0
/

0
0

0
/

0
8
4
8
0

0
/

0
R

o
u
ti

n
g

F
M

0
0

1
9

0
/

0
5
9
2
8

1
0

/
0

8
4
1
6

0
/

0
O

v
e
rfl

o
w

w
/
o

2
0

1
8
5
3
5

2
2
5
3
9

5
7
0
3

7
3
0
7

4
6
9
9
5

1
7
3
6

4
6
7
8

/
9

8
8
3
5

5
6
4
9

1
2
4
7
5

4
4
9
5

m
P
L
6

w
0

1
1
2
8
9

6
6
0

0
0

0
0

0
/

0
8
4
0
5

2
8
5

0
0

F
M

0
7
4
6
5

1
2
2
2
5

0
2
8

0
0

0
/

0
8
2
2
0

0
1
0
1
8
6

1
2

w
/
o

5
1

2
8
4
9

9
4

2
0

1
6

1
2
8
8
7

3
8
6
1
6

2
2
6
4

/
8
9
8

1
0
0
6
5

3
8
5

/
/

R
-N

T
U

p
la

c
e

w
0

0
0

0
0

0
0

0
/

0
8
5
5
1

0
/

/
F
M

0
0

6
0

0
0

1
1
6
7
0

0
/

0
8
3
9
2

0
/

/

/
9
2

2
0
0

/
/

7
3

1
9
3

/
/

/
2
9
7

/
4
0
6

/
F
P
3
.1

F
M

/
1
8
6

4
8
0

/
/

1
3
3

3
7
7

/
/

/
5
9
0

/
1
0
5
6

/
7
0

9
8

2
3
8

2
2
7

/
7
0

3
0
8

4
5
3

/
2
0
3

2
7
0

1
9
8

/
4
8
7

C
R

O
P

N
T

U
p
la

c
e
3

F
M

1
6
9

1
9
6

6
0
5

4
4
6

/
1
2
2

4
1
6

9
7
7

/
4
5
6

4
5
5

3
6
6

/
9
4
5

C
P
U

7
5

1
4
3

3
7
4

2
7
9

5
0
6

9
2

2
2
9

4
7
2

/
2
1
6

3
6
6

2
7
2

6
3
0

2
9
2

(s
e
c
o
n
d
)

m
P
L
6

F
M

1
4
2

2
1
3

4
9
1

5
5
9

9
6
7

1
6
5

4
5
7

8
8
7

/
5
5
4

7
7
4

4
6
6

1
3
0
6

9
8
2

6
5

9
7

2
7
2

2
1
6

3
0
1

6
6

2
2
4

6
9
0

/
2
2
5

2
5
6

1
8
9

/
/

R
-N

T
U

p
la

c
e

F
M

1
2
1

1
6
8

4
5
6

4
3
5

7
6
5

1
1
1

3
9
4

1
4
0
9

/
3
9
0

4
1
4

3
0
1

/
/

/
2

2
/

/
2

2
/

/
/

2
/

2
/

F
P
3
.1

F
M

/
4

4
/

/
4

4
/

/
/

4
/

4
/

2
2

2
2

/
2

3
2

/
2

2
2

/
2

C
R

O
P

N
T

U
p
la

c
e
3

F
M

4
4

4
4

/
4

4
5

/
4

4
5

/
4

it
e
ra

ti
o
n
s

2
2

3
2

3
2

3
2

/
2

2
2

3
2

m
P
L
6

F
M

4
4

5
4

5
4

4
4

/
5

4
4

5
4

2
2

2
2

2
2

2
3

/
2

2
2

/
/

R
-N

T
U

p
la

c
e

F
M

4
4

5
4

4
3

5
4

/
3

4
4

/
/

w
/
o

/
2
8
0

2
2
3

/
/

1
4
9
2

1
0
4
2

/
/

/
1
3
3
3
1

/
1
5
4

/
F
P
3
.1

w
/

3
4

1
0
7

/
/

3
9

2
8
2

/
/

/
1
3
8
3
2

/
3
2

/
F
M

/
3
3

2
1
5

/
/

3
6

7
6
2

/
/

/
1
3
3
2
8

/
1
7
1

/
w

/
o

2
0
3
1

3
1
1

1
0
9
6

3
8
9

/
1
9
4
5

2
5
1
7

2
6
9
2

/
3
6
2

1
2
7
2
6

1
2
7
1

/
1
0
8
8

N
T

U
p
la

c
e
3

w
1
4
4

2
0

1
0
1

2
6

/
4
6

8
7

8
0

/
2
8

1
3
0
0
6

6
8

/
7
8

R
o
u
ti

n
g

F
M

1
8
1

2
0

2
1
8

4
4

/
5
2

1
2
9
8

4
4
5

/
3
3

1
3
1
1
4

8
8

/
7
2
9

C
P
U

w
/
o

4
2
0

1
4
7
8

6
7
9
5

2
8
5
9

2
9
2
7

1
9
4
1

4
4
8

2
3
9
7

/
1
3
1

1
3
6
6
1

2
3
2
9

5
7
5
6

6
0
8
5

(s
e
c
o
n
d
)

m
P
L
6

w
5
8

9
7
4

1
0
6
6

4
2

2
0
2

7
5

2
5
6

6
9

/
2
3

1
3
5
5
4

1
5
8
1

2
0
0

1
5
5

F
M

6
3

5
8
8

2
9
1
9

1
2
0

7
3
2

1
2
9

1
4
8

9
4

/
2
8

1
3
2
2
4

4
0
8

2
6
9
7

9
6
4

w
/
o

6
4
2

3
1
1

9
7
5

2
4
8

5
3
1

1
6
1
9

3
8
6
9

6
4
3
9

/
9
3
3

1
2
8
0
1

5
1
5

/
/

R
-N

T
U

p
la

c
e

w
1
0
1

1
7

1
0
8

2
4

4
7

4
1

3
0
3

1
3
6

/
3
1

1
3
0
7
9

2
5

/
/

F
M

1
4
0

1
8

3
3
9

4
0

7
8
2

4
7

1
7
1
3

1
2
8
7

/
5
8

1
3
0
0
9

2
9

/
/

w
/
o

/
0
.3

1
0
.8

5
/

/
0
.2

7
0
.4

7
/

/
/

0
.8

1
/

1
.7

0
/

F
P
3
.1

w
/

0
.3

1
0
.8

5
/

/
0
.2

6
0
.4

8
/

/
/

0
.8

4
/

1
.6

5
/

F
M

/
0
.3

1
0
.8

9
/

/
0
.2

6
0
.4

7
/

/
/

0
.8

3
/

1
.7

3
/

w
/
o

0
.3

0
0
.3

0
0
.8

4
0
.7

1
/

0
.2

8
0
.4

7
0
.8

3
/

0
.4

6
0
.7

4
0
.8

1
/

0
.9

5
N

T
U

p
la

c
e
3

w
0
.2

9
0
.3

0
0
.8

2
0
.7

2
/

0
.2

8
0
.4

7
0
.7

9
/

0
.4

5
0
.7

4
0
.7

8
/

0
.9

2
R

o
u
te

d
F
M

0
.2

9
0
.3

0
0
.8

4
0
.7

5
/

0
.2

8
0
.4

9
0
.8

1
/

0
.4

7
0
.7

4
0
.7

9
/

0
.9

6
W

ir
e
le

n
g
th

w
/
o

0
.2

7
0
.3

2
0
.8

9
0
.7

1
0
.7

9
0
.2

7
0
.5

2
0
.7

9
/

0
.4

5
0
.7

7
0
.7

7
1
.2

9
1
.0

(×
1
0
e
7
)

m
P
L
6

w
0
.2

6
0
.3

2
0
.8

5
0
.7

2
0
.7

7
0
.2

6
0
.5

4
0
.7

7
/

0
.4

5
0
.7

7
0
.7

8
1
.4

0
0
.9

6
F
M

0
.2

6
0
.3

2
0
.9

1
0
.7

5
0
.8

0
0
.2

8
0
.5

2
0
.7

9
/

0
.4

6
0
.7

6
0
.7

7
1
.3

4
1
.0

7
w

/
o

0
.3

0
0
.3

0
0
.8

7
0
.7

4
0
.9

7
0
.2

8
0
.5

1
0
.9

1
/

0
.4

8
0
.7

7
0
.8

3
/

/
R

-N
T

U
p
la

c
e

w
0
.2

9
0
.3

0
0
.8

3
0
.7

3
0
.8

6
0
.2

7
0
.4

9
0
.8

4
/

0
.4

6
0
.7

6
0
.7

9
/

/
F
M

0
.2

9
0
.3

0
0
.8

7
0
.7

4
0
.9

6
0
.2

7
0
.5

2
0
.9

2
/

0
.4

8
0
.7

5
0
.8

0
/

/

T
a
b
le

3
.4

C
R

O
P

re
su

lt
s

o
n

IS
P
D

-G
R

b
e
n
c
h
m

a
rk

s
a
n
d

F
ix

e
d

M
a
c
ro

(F
M

)
m

o
d
e

www.manaraa.com

55

is better than the input placement solution. Second, although the congestion is improving, the

enhancement is usually less compared with the case which allows movable macros. Since the

range of movement is restricted when there are fixed macros, the required runtime (or refininig

iterations) is longer. Third, the routed wirelength is not affected. After applying CROP, the

total wirelength is 0.8% worse, 0.6% better, 0.8% worse and 2.0% better for FP3.1, NTUplace3,

mPL6 and R-NTUplace respectively. Generally speaking, the original placement solution is well

maintained.

ISPD-DR Benchmarks

ISPD-GR benchmarks evaluate the performance of CROP to the global routing stage. How-

ever, routability can be more accurately reflected in detailed routing stage. We derive the

ISPD-DR benchmarks also from ISPD05/06 benchmarks in the LEF/DEF format. Due to the

lack of publicly available detailed routers, we apply the industrial tool SOC Encounter for fur-

ther verification. The placement solution with and without CROP are imported into Encounter

and routed by built-in WROUTE. The detailed routing results are shown in Table 3.5.

We assign more restricted routing capacity by blocking out the whole capacity of macro from

layer1 to layer4 (In ISPD-GR, we assign block porosity penalty to reduce the capacity of layer3

and layer4). The ISPD-DR benchmarks are not easy for WROUTE, which usually can not fix

the routing overflow or violations cleanly. But after comparing the routing overflow with and

without CROP, it is noticeable that routability is improved 10% to 20%. The improvement is

not trivial as WROUTE is embeded with various features, and routability is only one of them.

The total runtime, however, does not show positive feedback. The reason is no benchmark

can be routed free of congestion, hence WROUTE has to spend considerate effort on ripup-

and-reroute. The ripup-and-reroute procedure is controlled by a user-defined parameter for

limiting the maximum round. The routed wirelength, in some cases, is improved. Similarly, it

is because the routing becomes easier and unnecessary detours can be avoided.

www.manaraa.com

56

M
et

ri
cs

T
oo

ls
a1

a2
a3

a4
a5

n1
n4

n5
n6

b1
b2

to
ta

l
no

rm
w

/o
10

64
4

83
33

40
49

3
51

73
2

50
48

6
10

45
3

27
91

8
88

84
8

/
/

/
32

23
84

1
F
P

3.
1

w
74

33
61

23
27

10
0

38
70

8
43

33
2

83
11

20
65

5
62

33
9

/
/

/
24

61
07

0.
76

34
R

ou
ti

ng
w

/o
98

57
20

51
5

46
26

2
55

90
1

57
65

5
17

87
6

58
90

5
93

53
4

81
46

6
35

93
66

18
9

51
35

18
1

O
ve

rfl
ow

N
T

U
P

la
ce

3
w

68
04

14
87

2
39

39
6

44
10

2
52

99
8

11
23

4
34

57
0

88
23

9
52

67
8

22
98

52
61

7
40

05
64

0.
78

w
/o

95
05

20
12

8
47

80
6

57
89

7
59

62
7

11
49

9
36

13
3

10
47

53
84

87
0

35
83

71
09

4
50

68
95

1
R

-N
T

U
pl

ac
e

w
75

75
16

79
4

39
02

3
53

01
9

52
32

4
81

75
30

98
7

92
98

3
77

65
4

22
12

63
22

0
44

39
66

0.
87

6

w
/o

33
19

24
00

79
39

74
83

11
72

9
26

14
12

03
35

30
/

/
/

40
21

7
1

F
P

3.
1

w
23

94
93

1
76

83
64

23
12

06
1

26
06

13
37

30
73

/
/

/
36

50
8

0.
90

8
R

ou
ti

ng
w

/o
25

53
88

1
79

02
17

16
11

45
9

33
87

17
55

36
04

35
67

26
89

31
22

42
63

5
1

C
P

U
N

T
U

pl
ac

e3
w

26
79

89
6

66
23

12
08

99
08

32
19

15
14

33
60

28
97

28
09

25
66

37
67

9
0.

88
4

(s
ec

on
d)

w
/o

25
90

86
6

83
15

68
54

13
15

2
24

14
13

48
37

67
38

59
27

71
33

88
49

32
4

1
R

-N
T

U
pl

ac
e

w
26

17
89

5
84

21
70

47
10

61
1

24
21

14
14

39
54

38
57

26
12

31
90

47
03

9
0.

95
4

w
/o

0.
93

1.
10

2.
47

2.
23

5.
03

0.
91

1.
68

4.
88

/
/

/
19

.2
3

1
F
P

3.
1

w
0.

94
1.

05
2.

53
2.

31
4.

99
0.

92
1.

67
4.

86
/

/
/

19
.2

7
1.

00
2

R
ou

te
d

w
/o

0.
96

1.
04

2.
46

2.
18

4.
92

0.
94

1.
62

4.
89

4.
12

1.
24

1.
89

26
.2

6
1

W
ir

el
en

gt
h

N
T

U
pl

ac
e3

w
0.

96
1.

03
2.

50
2.

22
4.

90
0.

94
1.

64
4.

83
4.

08
1.

23
1.

84
26

.1
5

0.
99

6
(×

10
e6

)
w

/o
0.

97
1.

03
2.

54
2.

26
4.

78
0.

88
1.

67
4.

89
4.

13
1.

15
1.

90
26

.2
1

R
-N

T
U

pl
ac

e
w

0.
96

1.
02

2.
46

2.
26

4.
74

0.
88

1.
70

4.
87

4.
13

1.
14

1.
88

26
.0

4
0.

99
4

T
ab

le
3.

5
C

R
O

P
re

su
lt

s
on

IS
P

D
-D

R
be

nc
hm

ar
ks

www.manaraa.com

57

Conclusion

In this work, we have presented CROP to improve routability for placement solution as a

refinement process. Our tool is independent of any placer and router. The main techniques

involves congestion-driven module shifting and congestion-driven detailed placement. We gen-

erate ISPD-GR and ISPD-DR benchmarks to test CROP’s performance. And CROP shows

promising results for various placement tools. We will further improve its performance and

stability.

Acknowledgments

The authors would like to thank Dr. Yao-Wen Chang, the UCLA CAD group, and Dr. Igor

Markov for the help with NTUplace3.0, mPL6 and Executable Placement Utilities respectively.

www.manaraa.com

58

CHAPTER 4. RegularRoute: An Efficient Detailed Router with Regular

Routing Patterns

A paper accepted by International Symposium on Physical Design

Yanheng Zhang and Chris Chu

Abstract

Detailed routing is an important phase of realizing exact routing paths for optimizing various

design objectives and satisfying increasingly complicated design rules. In this paper, we propose

RegularRoute, a fast detailed router trying to use regular routing patterns in a correct-by-

construction strategy for better routability and design rule satisfaction. Given a 2-D global

routing solution and the underlying routing tracks, we generate a detailed routing solution in

a bottom-up layer-by-layer manner. For each layer, the routing tracks are partitioned into a

number of panels. We formulate the problem of assigning global segments into different tracks of

each panel as a Maximum Weighted Independent Set (MWIS) problem. We propose a fast and

near-optimal heuristic to solve the MWIS problem. Then unassigned segments after MWIS are

partially routed by a greedy technique. For the unrouted portion of each segment, its terminals

are promoted so that the assignment is deferred to upper layers. At top layers, we apply panel

merging and maze routing techniques to achieve better routability. Due to the unavailability

of academic detailed routing benchmarks, we proposed two sets of detailed routing testcases

derived from ISPD98[45] and ISPD05/06 [21, 22] placement benchmark suites respectively.

The experimental results demonstrate that RegularRoute significantly outperforms WROUTE

in both quality and runtime.

www.manaraa.com

59

Introduction

Because of the problem complexity, VLSI routing is usually divided into global routing and

detailed routing. In global routing stage, rough routing decision is made based on G-Cell-to-G-

Cell (e.g., global routing cell) connection on a global routing grid graph. Detailed Routing, on

the other hand, realizes exact routing paths considering geometrical constraints based on the

global routing solution. Detailed routing is an important stage in the sense that it is directly

related to the routing completion and design rule satisfaction. It also impacts many design

metrics such as timing, manufacturability, etc.

Detailed routing has been well studied since 70’s (e.g., [13, 14]) but the topic is not frequently

seen in recent publications. For modern designs in which over-the-cell routing is applied, the

most common technique for detailed routing is rip-up and reroute such as the one in Mighty

[46]. However, such a simple sequential approach is not sufficient to handle congested designs

and it usually creates unnecessary detour. DUNE [15] and MR [16] proposed to handle full chip

gridless routing by similar multilevel approaches, in which the routing undergoes a coarsening

phase and an uncoarsening phase. But these multilevel routers still rely on sequential rip-up

and reroute technique and nets at the upper levels of hierarchy are routed based on inaccurate

information. Besides, how to do layer assignment is not fully discussed. Nam et al.[17] proposed

a detailed router for FPGA based on boolean satisfiability. Though the approach achieves good

solution quality, the runtime is extremely long. Zhou et al. [18] introduced track routing as

an intermediate step between global routing and detailed routing. In track routing, segments

extracted from global routing solution are assigned to routing tracks. But track routing does

not consider the connection of a segment to pins or segments in other layers. These issues are

postponed to detailed routing, which may fails to connect different parts of a net. Mustafa

[19] presented a meaningful technique to perform escape routing for dense pin clusters, which

is a bottleneck of detailed routing. A multi-commodity flow based optimal solution and a

Lagrangian relaxation based heuristic are proposed. Nevertheless, the technique is not proposed

for solving the whole-chip detailed routing.

With diminishing feature size, many complex design rules are imposed to ensure manufac-

www.manaraa.com

60

turability. It has been reported that for 32nm process, the number of rules reaches several

thousands [1] and the design rule manual has roughly a thousand pages [2]. The dramatic

increase in the number and complexity of the design rules makes detailed routing progressively

complicated and time-consuming. We notice that many of those complex rules are triggered

only by non-trivial routing patterns. Here we define regular patterns as those avoiding jogs and

unnecessary detours as much as possible. Figure 4.1 illustrates two routing solutions for the

same problem. The top one is irregular routing with many jogs and detours while the bottom

one is regular routing which only uses simple patterns. If only regular patterns are used, it

is not even necessary to check many design rules and the routing solution will be correct by

construction. On the other hand, if a routing pattern is irregular, even though it may not

violate any design rule, it is likely to be detrimental for both yield and routability. Moreover,

regular routing introduces less vias, jogs and wirelength and hence is better in terms of timing,

signal integrity and power consumption. In order to reduce the implementation complexity

and runtime of detailed routers and to improve the electrical properties, yield and routability

of circuits, we propose to perform detailed routing based on regular patterns. Note that this

approach is along the lines of the restrictive design rule approach that the industry has started

applying to the device layers to enhance manufacturability. In this paper, we extend it to the

interconnect layers.

Potentially, regular routing may adversely affect routability because it is more restrictive

and may be less effective in resolving congestion. This paper shows that the opposite is true.

The reason is that for regular routing, with an appropriate algorithm, the solution space can

be explored much more effectively and efficiently. On the contrary, for routing with general

patterns, the solution space is much larger. But it is also much harder to be explored. The

best known approach is to route the nets one by one using maze routing together with rip-up

and reroute. Such an approach is very time-consuming (especially if complicated design rules

need to be checked repeatedly throughout the routing process) and is prone to getting stuck in

local minima.

In this works, we present a fast and effective algorithm called RegularRoute to perform

www.manaraa.com

61

(a)

(b)

Figure 4.1 (a) Non-trivial routing patterns. (b) Regular routing patterns.

detailed routing with regular patterns. Novel techniques in RegularRoute are listed below:

• We introduce a new bottom-up layer-by-layer framework for detailed routing.

• We propose a single trunk V-Tree topology for routing local nets.

• We divide the routing problem of global nets into assignment of global segments into

panels. This approach facilitates parallel processing as assignment for different panels

are independent of one another.

• We formulate the global segment assignment problem for each panel as a Maximum

Weighted Independent Set (MWIS) problem. This formulation enables all segments to

be considered simultaneously.

• We present a fast and near-optimal heuristic to solve MWIS.

• We employ a technique to maximize the usage of a panel by partially assigning some of

the remaining segments after MWIS.

• We introduce a terminal promotion technique to connect various segments of each net

assigned to different layers.

www.manaraa.com

62

• We present panel merging and maze routing techniques to handle unassigned segments

at the top layers.

We implemented RegularRoute and tested its performance on two sets of detailed routing

testcases derived from ISPD98[45] and ISPD05/06 [21, 22] placement benchmarks respectively.

Experiments show that RegularRoute significantly outperforms WROUTE in both quality and

runtime. In particular, RegularRoute completes routing of all eight ISPD98 derived testcases

and achieves much better routability in ISPD05/06 derived testcases.

The rest of paper is organized as follows: Section 2 provides the problem formulation and

an overview of RegularRoute. Section 3 discusses the routing for local nets. In Section 4, we

introduce techniques for handling global segments assignment. Experimental results are shown

in Section 5.

Materials and Methods

Preliminaries

In this section, we will present some definitions, the problem formulation and the algorithm

flow of RegularRoute.

Problem Formulation

In this paper, as regular routing is considered, we model the routing resource as a 3-D regular

grid graph. Each grid edge can accommodate one wire except for edges with blockage, which

cannot be used. Each layer of the graph has a preferred routing direction and the preferred

directions of adjacent layers are perpendicular to each other. We assume the preferred direction

of lowest layer (metal1) is horizontal. For each layer, the routing usage that is in the preferred

direction is called preferred usage. Otherwise, the routing usage that is perpendicular to the

preferred direction is called non-preferred usage. A sequence of unblocked grid edges along the

preferred routing direction of each layer is called a routing track.

Assume a placed netlist with exact pin locations and a corresponding 2-D global routing

solution are given. In this paper, we assume all pins are on metal1. The detailed routing

www.manaraa.com

63

problem is to route all nets on the grid according to the global routing solution such that routes

of different nets do not intersect. The primary objective of detailed routing is to complete as

many nets as possible. The secondary objectives include minimizing non-preferred usage, via

count and wirelength. In industrial applications, there may be many other design metrics

such as timing, crosstalk, yield, etc. These metrics can potentially be incorporated into our

framework but they will not be handled directly in this paper.

In our framework, the global routing solution of each net is partitioned into a set of segments

by breaking it at the turning points. Each segment is a horizontal (or vertical) route which

spans multiple G-Cells in a row (or column). Then detailed routing of global nets is formulated

as assigning the global segments to the routing tracks. Ideally, each segment should be assigned

to one track. In order to make routing less restrictive, assigning a segment to more than one

tracks connected by short non-preferred usage or via is allowed but discouraged. We define

a panel to be the collection of all tracks on one layer within one row (for odd layer) or one

column (for even layer) of G-Cells. Note that each segment can only be assigned to tracks on

a deck of panels that are on different layers but are associated with the same row/column of

G-Cells spanned by the segment. In other words, it is natural to perform the global segment

assignment in a panel-by-panel manner. Figure 5.1 shows the definitions of track, segment and

panel.

G-Cell
track

panel

Segments

Figure 4.2 Definitions of track, segment and panel.

www.manaraa.com

64

Algorithm Flow

We show the flow of RegularRoute in Figure 4.3. RegularRoute starts with extracting

global segments from the 2-D global routing solution. Then local nets are pre-routed using the

single trunk V-Tree topology. In the following global segment assignment, the routes of local

nets are treated as blockages. Next, we perform global segment assignment in a bottom-up

layer-by-layer manner. At each layer, the segment assignment of different panels are handled

independently. For each panel, we formulate global segment assignment as a MWIS problem

and solve it by a heuristic with two rounds. In the first round, we restrict the number of

choices for each segment to estimate the level of difficulty of the panel. If it is hard to assign

all segments, we proceed to the second round with the same choices for the assigned segments

but full choices for the unassigned segments in the first round. Then the MWIS problem is

solved again. After that, we apply a partial assignment technique to increase the utilization of

the panel. Then if we have not reached the top horizontal or vertical layers, for the unassigned

segments, we promote their terminals and defer their assignment to upper layers. For the

unassigned segments at the top layers, we utilize a panel merging technique which provides

more flexibility in the assignment by allowing segments to derivate from the global routing

solution. Finally, maze routing is applied for the residual unassigned segments.

Local Net Routing

In detailed routing, the net or sub-net that resides totally inside one G-Cell is called a local

net. In RegularRoute, local nets are routed before assigning global segments. The routing

solutions of the local nets are treated as blockages in the following global segment assignment.

It is possible to route local nets and global segments simultaneously by integrating local net

routing into the MWIS framework in Sec. 4. But in order to reduce the size of MWIS problems

and hence the runtime of the whole algorithm, we choose to handle local nets before global

segments.

In this section, we first introduce local net routing by single trunk V-Tree topology. We then

demonstrate that single trunk V-Tree topology can better preserve routing resources to be used

www.manaraa.com

65

Global Segment Extraction

Local Net Routing by
Single Trunk V-Tree

End

Solve MWIS
by heursitic

with two rounds

Partial Assignment

Global Segment Assignment Top
Layer ?

NO

Terminal
Promotion

YES

Panel Merging and
Maze Routing

Next Layer

Figure 4.3 Flow chart for RegularRoute.

in global segment assignment. It is possible to have conflicts among the single trunk V-Trees

of different nets. Hence we also present a branch and trunk shifting technique to resolve the

conflicts.

Single Trunk V-Tree Topology

Single trunk tree has been proposed to predict the routing usage or interconnect properties

at early design stages [47]. In here, we use a single trunk tree with the trunk being vertical to

route the local nets. We call this topology single trunk V-tree. Consider all the pins inside a

G-Cell. The x-coordinate of the trunk is set to be the median of the x-coordinates of all pins.

The trunk spans from the minimum y-coordinate to the maximum y-coordinate of all pins. The

trunk is on metal2. We connect each pin to the trunk with a metal1 (horizontal) connection,

which we call a branch, and a via. Figure 4.4 shows an example of single trunk V-Tree.

Single trunk V-Tree is very easy to construct. The time complexity is O(N log N) for a

local net with N pins. In our testcases, the average pin count is very small (around 3). So the

runtime is negligible compared other steps.

www.manaraa.com

66

Single Trunk V-Tree RSMT

Figure 4.4 Track blockage count for single trunk V-Tree and RSMT.

There are many candidate topologies to construct the trees for local nets. For instance,

RSMT and RMST are promising candidates. The reason we choose single trunk V-Tree is for

the sake of saving routing resources on metal2. In Figure 4.4, single trunk V-Tree and RSMT

are presented for the same 5-pin net. In metal1, five tracks are blocked in both cases. In metal2,

for single trunk V-Tree, only one metal2 track is blocked but for RSMT, three metal2 tracks

are blocked. As single trunk V-Tree blocks fewer tracks on metal2, global segment assignment

will have more tracks to use later on.

Trunk and Branch Shifting

During the local net routing, we first determine the vertical trunk. If the total pin number

is odd, the trunk has only one choice for minimum wirelength. Each branch has only one choice

too. If there are multiple local nets inside one G-Cell, there is a risk of conflict among trees

of different local nets. To avoid the conflict, we apply trunk and branch shifting by trying

neighboring tracks. Any unresolved conflict can be resorted to higher layers (e.g., metal3 and

metal4). But in our experiments, all local nets can be routed using only metal1 and metal2.

The results will be shown in Section 5.

www.manaraa.com

67

Global Segment Assignment

In Section 2, we have discussed the flow and general formulation of global segment assign-

ment. In this section, we cover the details. We first present the detailed MWIS formulation for

assigning the global segments to a panel using regular routing patterns. We then provide a fast

and effective heuristic to solve the MWIS problem. We next discuss the partial assignment to

increase the utilization of the panel. Then we talk about the terminal promotion techniques to

defer the unassigned segments to upper layers. For the unassigned segments on the top layers,

we develop the effective panel merging and maze routing techniques for final improvement.

Segment Assignment by Maximum Weighted Independent Set

In Section 2.1, we have discussed the general problem formulation. And we have mentioned

the global segment assignment problem in each layer is solved by a panel-by-panel strategy.

The segment assignment inside one panel is a fundamental component to the whole algorithm.

In this subsection, we will investigate this problem. Without loss of generality, we only consider

horizontal panels (metal1, metal3, etc.).

We need present more definitions for global segment here as it is the major subject we

handle in this section. The global segment is a route spans a row or column of G-Cells. We call

starting G-Cell and destinating G-Cell the two ending G-Cells (or two ends) of the segment.

For each end, it could be incident to a terminal or a pending segment. Being incident to a

terminal means the segment needs be connected to the terminal inside the G-Cell. The terminal

is either a metal polygon or a pin. Connecting the assigned segment and its terminal is called

terminal connection. On the other hand, being incident to a pending segment suggests the end

of the segment needs be connected to another segment which has not being assigned yet. The

terminal, pending segment and terminal connection concepts are illustrated in Figure 4.5. In

the figure, the left and right ends of segment 1 are incident to a existing metal polygon and a

pin respectively. We show the terminal connection of the right end. The left end of segment

2 is incident to a pending segment that has not been assigned. The pending segment is shown

in dotted line.

www.manaraa.com

68

Track t1

Long Pin
Connection

pin

existing wire

segment 1

terminal
connection

pending
segment

segment 2

Figure 4.5 Concepts for incident terminal, pending segment and terminal connection.

To assist the formulation of the MWIS problem, we introduce the concept of choice when

assigning a segment. A choice is a valid candidate solution to assign the segment using a regular

routing pattern when no other global segments is considered. The candidate solution includes

which track is used and how terminal connection is performed. In particular, we introduce a

triplet (t, T1, T2) to represent a choice for a segment. t is the track used to assign the segment.

T1 and T2 are the labels for both ends containing the information on how to perform terminal

connection. Take T1 for instance. If the first end is not incident to any terminal, T1 is labeled as

”none (F)”. If it is incident to terminal and terminal connection will be performed in current

layer, T1 is labeled as ”current (C)”; Otherwise, if terminal connection is not performed in

current layer, T1 is labeled as ”next (N)”. We also define the numerical values associated with

the content of a label: ”none (F)” and ”next (N)” is 0 and ”current (C)” is 1. Basically, the

numerical values are introduced to calculate the weight of a choice. The weight calculation will

be introduced later.

In Figure 4.6, we show two segments with one choice and two choices respectively. In the

triplets, the track and label for both ends are displayed. For segment i (the right one), choice

c i1 uses track t1 and does not connect the first terminal in current layer (labeled as ”N”). And

choice c i2 uses track t3 and both terminals are connected in current layer (labeled as ”C”).

If there are conflicts between different choices, they cannot be selected together. For instance,

in Figure 4.6, choice c j1 conflicts with choice ci2. Plus, the choices that derive from the same

www.manaraa.com

69

segment mutually conflict with each other. For example, choice c i1 conflicts with choice c i2.

Track t1

Long Pin
Connection

tracks

c_j1
c_i2

vertex

edge

Choice 1 (L, t3, TRUE, TRUE)

choice 2 (L,t1,FALSE, TRUE)
t1

t2

t3

Layer L

t1

t2

t3

t4
C_j1(t3, C, C) c_i2 (t3, C, C)

c_i1 (t1, N, C)

c_i1

Figure 4.6 Conflicting choices and conflict graph.

We formulate a MWIS problem for solving the global segment assignment inside one panel.

For each choice, we create a vertex. And the conflicts between choices are modeled as edges in

the graph. One example of the conflict graph is shown in Figure 4.6. Each vertex is assigned

a weight specifying the priority of the choice. The objective of the MWIS is to select a set of

independent vertices with maximum weight.

The weight calculation for each vertex is important in the MWIS problem. It should contain

components for both the routing completion (primary objective) as well as the routing quality

for minimizing non-prefered usage, via count and wirelength (secondary objectives). We use

the following function for weighting a vertex (choice).

W (v) = L + α1 × (T1 + T2) + α2 × (
∑

b∈B (Db)2

‖B‖
)− α3 × d + α4 × (f1 + f2) (4.1)

We have five major components for determining the weight of a choice.

1. Segment Length

L is the number of global routing grids that the segment spans. It relfects length of the

www.manaraa.com

70

(c)

l1

l2

l3

pending
segment

t1

t2
t3

(a)

detour detour

(b)

t1
t2
t3
t4
t5
t6harder easier

segment a

segment b

blocking
pin

assigned
usage

Figure 4.7 (a) G-Cell boundary density. (b) Detour component. (c) Flexibility component

segment. In the weight calculation, we encourage packing more usage to current layer.

This is a component for routing completion.

2. Terminal Connection

This component increases the weight for the choices that perform terminal connection in

current layer (label with ”C”). Performing terminal connection in current layer preserves

routing resources in the upper layers and saves additional vias. Though a necessary

component, it should be noted that terminal connection is not always preferred. For

instance, in Figure 4.7(b), the choice indicates connecting both the incident terminals

in current layer. Based on terminal connection component, we will increase the weight

for this choice. However, it should be discouraged as it introduces long non-preferred

usage which might block other segments. In order to achieve the balance, we adjust this

component by the detour component that will be introduced later. Terminal connection

works for both routing completion and routing quality.

www.manaraa.com

71

3. G-Cell boundary density

This component is used to increment weight for the segments that cross dense G-Cell

boundaries. We use the number of crossing segments to represent the boundary density.

Intuitively, the segment passing through denser G-Cell boundaries is harder to assign.

They can easily incur conflicts with other segments. We use the average quadratic G-Cell

boundary density for this component. In Figure 4.7(a), segment a is harder to assign

than segment b as it passes through denser G-Cell boundaries. In Equation 1, B is the

set of G-Cell boundaries the segment passes through. Db is the density of boundary b.

We sum the quadratic value of density and divide it by the number of boundaries. This

component is proposed for routing completion.

4. Detour Component

We use d in the Equation1 to represent the detoured wirelength. The detour is defined as

the extra wirelength over the minimum necessary wirelength to complete the assignment.

For each segment, we define the tracks without causing any detour as the preferred tracks.

Please refer to Figure 4.7(b). The segment is assigned to track t6, which creates a detour

of 8 units. Long terminal connections will be made either in current layer or the other

layers, which creates more blockages for future assignment. Hence the choice with long

detour should be discouraged. The detour component is for routing quality.

5. Flexibility Component

The flexibility component is used to differentiate choices for the segment with one or

more ends that are incident to pending segments. As is discussed earlier, the pending

segment has not being assigned. In this case, the track which offers more flexibility for

assigning the pending segment is better of routability. We define the length from the close

boundary of the ending G-Cell (left boundary for right end and right boundary for the

left end) to the first blockage or the far boundary for a particular track as the flexibility

length. In Equation 1, we use f1 and f2 to represent the flexibility lengths of both ends

if certain track is taken (flexibility length will be 0 if the end is not incident to pending

segment). As in Figure 4.7(c), l1, l2 and l3 are flexibility length of the right end for track

www.manaraa.com

72

t1, t2 and t3 respectively. The track with larger flexibility length is more flexible (i.e.,

more opportunities) for assigning the pending segment. As illustrated in the figure, if we

assign the segment to track t1 and t2, we cannot assign the pending segment as shown in

dotted line without detour. The flexibility component is for routing completion.

In the equation, there are four coefficients (α1, α2, α3 and α4) for tuning the importance

of each component. They are determined by experiment.

The MWIS problem is NP-Complete [3], and solving it optimally is time-consuming (there

are hundreds of panels for each layer and each panel contains thousands of segments). Instead

we develop an efficient heuristic. For each panel, we rank the vertices according to the cost

function as shown in Equation 2,

clique1

vertex A
i_deg: 3
o_deg: 4

vertex B
i_deg: 3
o_deg: 2vertex C

i_deg: 3
o_deg: 1

clique2

A

B

E

C

vertex E
i_deg: 2
o_deg: 3

D

F

G

Figure 4.8 Calculation of inside/outside degree for each vertex.

C(v) = W (v)− β × i deg(v)− γ × o deg(v) (4.2)

where W represents the weight of vertex v, i deg is called inside degree and o deg(v) is outside

degree. The two degrees are defined based on clique. The clique is the set of vertices that derive

from the same segment. For the particular vertex, the number of connection inside the clique

is the inside degree and vice versa for outside degree. The definition is illustrated in Figure 4.8.

Vertex A, B, C and D form Clique1 and we show the inside degree and outside degree for A,

B and C respectively. The other three vertices form Clique2 and similar info is illustrated.

www.manaraa.com

73

Basically, vertex with larger weight and smaller inside/outside degree is prioritized. First, the

vertex with higher weight is preferred since our algorithm tries to pack as much usage as possible

in current layer and the weight function (Equation 1) encourages this objective. Second, larger

inside degree means more choices for the same segment. We could delay its assignment and

leave the routing resources for less flexible ones. Third, the vertex with larger outside degree

means more conflicts with other segments. Such choice is suppressed to allow less conflicting

segments to be assigned earlier. Again, the coefficients (β and γ) is experimentally determined

and we use a uniform set of coefficients for all testcases.

We assign the vertex with the order of decreasing cost. We assign the segment based on

the choice suggested by the vertex. After processing each vertex, we perform graph update to

deactivate the incident vertices. Basically all neighboring vertices that are connected to the

processing vertex will be marked as inactive (dead vertices) and they will not be considered

in future assignment. We will also update the inside/outside degree for the vertices that are

incident to the neighboring vertices (except the processing vertex). And those vertices will be

re-ranked using binary search. The assignment process goes on until all vertices in the graph

are visited.

In our tool, the number of choices for each segment has big impact on runtime as it decides

the number of vertices of the conflict graph. Providing small number of choices would lower

solution quality while granting large number of choices might cost long runtime. To balance

this effect, we implement the MWIS problem in two-round flow. The first round is an initial

estimation of difficulty of the panel. In that regard we only consider the choices that are close

to the preferred tracks. For instance, we set a bound of offset number of tracks away from the

preferred tracks (We use 2 in the experiment). If in the first round all global segments in the

panel can be assigned without any conflict and design rule violations, we dump the solution and

move forward to the next panel. Otherwise, we grant unassigned segments with full choices.

And the assigned segments will be ripped up and still use the same number of choices as before.

Then the MWIS problem is solved again. This idea is a trade-off between solution quality and

runtime. The algorithm might become prohibitively slow when the number of choices are too

www.manaraa.com

74

large. In real practice, we could extended the idea to multi-round. The unassigned segments are

granted with more and more choices gradually during the multi-round estimation. The number

of tracks for each panel, however, is relatively small (around 10). A two-round strategy is

sufficient for runtime speedup.

Partial Assignment

After solving the MWIS problem by our algorithm, there are potentially large number of

remaining unassigned segments in the congested panels. In order to better utilize the routing

resources of current layer, we need explore more possibility beyond the choices defined in the

MWIS problem. We implement a partial assignment for increasing the utilization of the panel.

current
layer
tracks

next layer
tracks

assigned
segments

old pin

new pin

(b)

vias

partially
assigned

assigned
usage

blocking terminals

incident
terminal

Figure 4.9 Partial assignment technique for unassigned segments.

For each unassigned segment with at least one end with incident terminal, we will try

partial assignment starting from the incident terminal to the other end near the preferred

tracks for optimizing the weighting function used in the MWIS problem (Equation 1). The

idea is illustrated in Figure 4.9. Both ends of the unassigned segment are incident to terminals.

The incident terminals are highlighted with bigger shape than the ”blocking terminals” as in

the figure. The previously assigned usage is treated as ”blockage”. We denote the partially

assigned segments as well.

www.manaraa.com

75

There is a special case When both ends are incident to terminals. It is possible the partial

assignment originated from each end extends beyond each other. In this case, we will try

assigning a non-preferred connection to link the two partial assignments. If the non-preferred

usage can be assigned without blockage, the segment is assigned in current layer. Otherwise, we

promote the far end of the partial assignment to upper layer as a new terminal. The terminal

promotion will be introduced next subsection.

The partial assignment method offers more flexibility and is useful for further improving

the utilization of current layer. An alternative idea is to incorporate the partial assignment

into the MWIS problem. It is possible to make various partial assignment as choices in the

conflict graph. However, it requires incorporating much more vertices and edges. We apply the

partial assignment as postprocessing after MWIS problem.

Terminal Promotion

For the unassigned segments after applying partial assignment, we need defer their assign-

ment to upper layers. However, there will be terminal connection issue when the segment is

assigned in upper layer while its terminals are located in lower layers. Let’s suppose a horizon-

tal segment is finally assigned to metal5 and one of its end is incident to terminal in metal1.

In this case, we have to connect the terminal to the assigned segment, with a set of short

wires and vias between metal1 and metal5. However, if the routing resource is limited (i.e.,

nearby routing tracks are taken up), realizing this connection can be headache and may finally

results in big effort in rip-up and reroute. In order to avoid this situation, we can promote the

terminals of unassigned segments before we move to upper layer. After promoting terminals

up, in the assignment in upper layer, we could always treat the terminals as in current layer.

The idea could be highly effective for congested panels where the routing resources are limited.

Hence the main difference of our algorithm and the track assignment[18] is that ours could

guarantee a valid solution after all segments are successfully assigned. Yet track routing may

spend a lot of rip-up and reroute effort for correcting failed terminal connection and segments

between different layers.

www.manaraa.com

76

We count the number of tracks that the terminal can access in the upper layer. If there

is only one track that the terminal can access. We select the track and promote the terminal

accordingly. If the terminal is capable of accessing multiple tracks, we pick the track that is

closest to the terminal. If there is no access to upper layer, we rip-up the usage that is small

and close to the terminal to guarantee it has at least one access. We first use a short connection

on the track where the original terminal is located to where a via can be inserted. Then the

via is used to promote the old terminal to the upper layer tracks. In the upper layer, we create

a virtual stripe covering all the tracks in the upper layer that the original terminal can access

(virtual means we do not assign actual wire). If the segment is eventually assigned to a track

that is not the same as the track we promote the original terminal to, we just rip-up the original

terminal connection and redo it.

In Figure 4.10, we show how we promote the old terminal to upper layer. The horizontal

tracks are current layer routing tracks and the dotted tracks are tracks on the upper layer. The

vertical short lines in light color are potential via location. The original terminal is located on

track t1. To promote the old terminal, we extend it with a short wire on track t1 and then add

the via. The new terminal is shown on the tracks of upper layer.

current layer
tracks

next layer
tracks

assigned usage
in curret layer

old
terminal

new
terminal

(a)

vias

t1

Figure 4.10 Terminal promotion to avoid terminal connection failure.

www.manaraa.com

77

We could also incorporate the terminal promotion into the MWIS problem. For the seg-

ments with incident terminals, choices (vertices) representing terminal promotion is introduced

to defer assignment of a segment. We need be aware that the segment should be either assigned

to tracks in current layer or its incident terminals be promoted to upper layers. One of the two

cases must be met. Hence the weight of the vertex need be set wisely such that choice of exactly

one case is taken. This method is doable and we have tried it inside the MWIS problem. But

the QOR in terms of routability (i.e., the number of assigned segments) is similar to keeping

terminal promotion outside MWIS. Hence we apply terminal promotion as a postprocessing

after partial assignment. Overall, the terminal promotion is a highly effective technique in

RegularRoute. A valid detailed routing solution is generated after global segment assignment.

Unassigned Segments on Top Layers

For unassigned segments on the top two layers (top two layers with horizontal and vertical

tracks respectively), there are no upper layers where we can defer the assignment to. For better

routability, we apply panel merging and eventually maze routing if the testcase is too hard.

All of our discussion has been based on the assumption that each segment respects the

global routing solution. More specifically, the input global routing solution determines which

panel each segment must be assigned. This assumption is restrictive in the fact that it forbids

the option of trying alternative panel for better routability.

More specifically, for the panel with unassigned segments, we try to merge it with neighbor-

ing few panels and redo the assignment. In the case when the neighboring panel has space for

holding more segments, it is likely the problem can be resolved. In the experiment, we merge

the neighboring one panel (total three panels). This number can be modified depends on the

level of hardness and runtime. The panel merging technique is effective for the segments with

preferred tracks near the panel boundary. The merging of panels eliminate the boundary and

the segment becomes more flexible.

For the very hard testcases, we could apply the panel merging in lower layers instead of

waiting till the top layer. Actually, we could run RegularRoute initially for estimation and

www.manaraa.com

78

record the panels that are congested (with unassigned segments). We then run RegularRoute

again starting from scratch with the precaution of congested panels. The panels that are

predicted congested could be merged with neighboring panels since the lower layers. Again, it

is a trade-off between solution quality and runtime and we adopt this idea in the case when

testcase is too difficult to handle.

If there are still unassigned segment left, we eventually resort to a line probe maze routing

technique or a full 3-D maze routing technique. The maze routing is most flexible technique

but detour-prone and time-consuming. We adopt it as the last effort in RegularRoute.

Besides maze routing technique, we could also try academic MWIS solver in order to better

solve the problem. However, the near-optimal solver such as [48] will be slow in nature. In

order to maintain the fast runtime, we keep the fast heuristic as the main solver.

Results and Discussion

All our experiments are performed on a machine with 2.67GHz Intel Xeon CPU and 32G

memory. We derive two sets of detailed routing testcases from ISPD98[45] and ISPD05/06

[21, 22] placement benchmark suites respectively. In original ISPD98 placement benchmarks,

pins are set to be at the center of each standard cell, we develop a program to randomly set the

pin coordinate and make sure they satisfy the spacing requirement at the bottom layer. The

size of each module in the derived testcases is the same to that of the IBMv2[49] placement

benchmarks. We use Dragon [33] to generate the placed testcases for ISPD98 benchmarks and

FastPlace3.1 [39] to place the ISPD05/06 benchmarks. We derive the global routing testcases

similar to the format defined by ISPD07/08 global routing benchmarks [28, 29]. We then use

FastRoute 4.0[42] to route the global routing testcases and generate the 2-D global routing

solution. Both the global routing testcase and the 2-D solution are imported into Regular-

Route. Due to the lack of available academic detailed routers, we compared our results with

an industrial router - WROUTE. However, WROUTE does not recognize bookshelf placement

format or the global routing testcase format we use. We therefore convert the placed testcases

by publicly available conversion tool to LEF/DEF format testcases which we can import into

www.manaraa.com

79

WROUTE. Although the testcases are in different formats 1 We make sure the basic infor-

mation such as pitch size, module size, routing region, routing layers etc. are identical for

both testcases. For the ISPD05/06 placement benchmarks, they are initially proposed for the

contest purpose and are not easy to route given the original pitch size (based on the pitch size

defined in the ISPD07/08 global routing contest). We thus reduce the pitch size by half and

increase the layer count for some testcases.

Results of Local Net Routing

We first show RegularRoute’s performance on handling local nets based on the single trunk

V-Tree topology. We report the final unassigned local nets, total CPU time, final metal2 usage

and unassigned global segment count. Here we only use metal1 and metal2. We compare our

results with RSMT topology.

In Table 4.1, the first column lists all experimental testcases. Due to limited space, we only

show the results for the ISPD98 derived testcases. The next column shows the total number

of local nets for each testcase. The following six columns show results of single trunk V-Tree

and RSMT respectively. The RSMT is generated by FLUTE[26] using default settings. First,

#un.L. is the final unassigned local nets. Single trunk V-Tree has no unassigned local nets.

But RSMT tree incurs some unassigned nets. Second, CPU is the runtime in seconds. FLUTE

runs faster than our algorithm. But the local nets routing runtime is trivial compared with

global segment assignment. So the runtime advantage is not important. Third, metal2 usage

is the total usage on metal2 after routing local nets. The single trunk V-Tree introduces 20% to

30% less metal2 usage, which saves more resources on metal2. #un.G. is the final unassigned

global segment if either topology is applied. RSMT may incur some unassigned global segments

and it further suggests RSMT is inferior in preserving routing resources.
1The input to RegularRoute is global routing testcases and solution derived similar to that of ISPD07/08

global routing benchmarks [28, 29] and the input to WROUTE is LEF/DEF format design.

www.manaraa.com

80

Single Trunk V-Tree RSMT
#Loc.#un.CPU metal2 #un.#un.CPU metal2 #un.

Name Nets L. (sec.) usage(×10e3) G. L. (sec.) usage(×10e3) G.
ibm01 1081 0 0.04 6.3 0 0 0.02 9.6 0
ibm02 1750 0 0.09 12.8 0 0 0.04 15.3 0
ibm07 4479 0 0.18 22.3 0 7 0.05 32.6 5
ibm08 5539 0 0.23 27.8 0 0 0.11 39.6 0
ibm09 5429 0 0.20 28.2 0 9 0.08 37.9 0
ibm10 2984 0 0.27 17.4 0 0 0.12 29.4 1
ibm11 6983 0 0.26 38.9 0 4 0.07 50.1 7
ibm12 2433 0 0.32 14.5 0 0 0.12 26.8 0

Table 4.1 Results for local net routing on ISPD98 testcases

Global Segment Assignment Results for ISPD98 Testcases

In Table 4.2, we show the results for global segment assignment of RegularRoute on the

eight ISPD98 testcases. We compare the results with WROUTE (version 3.0.61). The testcase

statistics are shown in the first seven columns, for total number of nets (#Nets), G-Cell grids

(Grid), total number of global segments (#Seg.), total number of local nets (#Loc.Nets), the

average net degree for the whole netlist (Avg.Deg.), maximum number of segment (MaxSeg.)

in one panel and maximum number of pin in one panel (MaxPin) respectively. These statistics

provide an overall idea about the complexity of these testcases. The next column shows the

runtime for FastRoute 4.0[42]. The global routing runtime gives the rough idea of how fast our

detailed router compared with the the global router. The following columns show the results of

RegularRoute and WROUTE respectively. #unassigned is the count of segments that cannot

be handled by RegularRoute. CPU is the runtime in seconds. The WROUTE results are

reported with similar metrics. ”viol.” is the number of design rule violations, and ”#fail” is

the number of nets that cannot be connected.

From the table, RegularRoute outperforms WROUTE in both quality and runtime. First,

RegularRoute is capable of routing through all the eight testcases. WROUTE, nevertheless,

cannot route any testcase without violation. Usually it incurs thousands of DRC violations and

a number of failed nets. Second, in terms of runtime, RegularRoute is much better compared

www.manaraa.com

81

with WROUTE (we bucket the maximum rip-up and reroute rounds, otherwise WROUTE

could run for ever), which spends a lot of runtime on rip-up and reroute. On the other hand,

it is likely that WROUTE incorporates more design objectives than ours, though we strived

to turn off all non-relevant design objectives. However, the point we want to demonstrate is

the restrictive regular routing is doable for good routing completion. As we have mentioned

in earlier part, we could incorporate more design metrics into our framework. The weight

function or cost function for solving MWIS problem can be thus extended to incorporate other

design objectives. And we also see better chance for satisfying various design rules, as more

and more complicated design rules are triggered by non-trivial routing patterns. The good

routing completion rate could also save additional effort during the design rule clean-up stage

and thus better manufacturability.

Global Segment Assignment Results for ISPD05/06 Testcases

We show the complete results on ten testcases derived from ISPD05/06 [21, 22] placement

benchmarks. They are indeed much bigger in size and more challenging than the ISPD98

derived testcases. We only show the results for ten testcases (sixteen benchmarks in total)

because some testcases cannot be routed by WROUTE (either crashes during execution or

incurs input constraints violation). As mentioned earlier, these testcases are made following

the similar procedure of ISPD98 testcases. We use FastPlace 3.1[39] to place all the placement

benchmarks with default setting. Likewise, the results are also compared with WROUTE. We

show the number of unassigned segments(#unassigned), the CPU time, the via count and

total wirelength for RegularRoute and WROUTE. We also show the violation (viol.) count for

WROUTE. First, RegularRoute is capable of routing all local nets (not shown in Table 3) and

assigning all global segments. While WROUTE is likely to incur several failed nets and plenty

of design violations. Like the experiments for ISPD98 testcases, we tried our best to switch

off other design objectives. Second, Regularroute has smaller via count and wirelength than

WROUTE. In particular, smaller via count and wirelength will benefit timing, signal integrity

and power consumption. Based on the results, we show RegularRoute is also doing well for

www.manaraa.com

82

T
es

tc
as

e
St

at
is

ti
cs

F
R

4.
0

R
eg

ul
ar

R
ou

te
W

R
O

U
T

E
(E

nc
ou

nt
er

)
#

L
oc

.A
vg

.M
ax

M
ax

C
P

U
#

un
as

s-
C

P
U

vi
a

w
le

n
C

P
U

vi
a

w
le

n
N

am
e#

N
et

s
G

ri
d

#
Se

g.
N

et
s

D
eg

.S
eg

.
P

in
(s

ec
.)

ig
ne

d
(s

ec
.)

×
10

e5
×

10
e5

#
fa

il
vi

ol
.

(s
ec

.)
×

10
e6

×
10

e7
ib

m
01

11
50

7
13

3×
13

2
42

30
7

11
18

3.
85

23
8

46
3

0.
47

0
2.

69
1.

1
6.

8
0

19
05

14
5

1.
2

6.
9

ib
m

02
18

42
7

15
2×

15
1

80
89

1
16

16
4.

23
36

6
61

6
2.

71
0

11
.5

3.
4

18
.8

0
32

66
35

5
3.

5
19

.2
ib

m
07

44
39

4
22

9×
22

81
62

00
9

56
91

3.
7

50
7

87
7

8.
51

0
28

.2
5.

3
39

.9
3

67
23

55
3

5.
6

41
.8

ib
m

08
47

94
4

23
9×

23
81

98
18

8
69

05
4.

13
56

8
10

42
10

.1
0

48
.2

6.
0

45
.9

0
56

45
68

2
6.

1
47

.8
ib

m
09

50
39

3
24

3×
24

21
79

94
2

65
90

3.
73

50
9

10
16

6.
11

0
38

.1
4.

9
35

.0
0

19
65

77
2

4.
9

35
.5

ib
m

10
64

22
7

31
6×

31
52

82
04

1
43

29
4.

19
64

0
10

45
8.

97
0

57
.2

8.
2

68
.5

8
18

81
1

10
90

8.
5

71
.0

ib
m

11
66

99
4

27
6×

27
52

30
36

5
84

86
3.

54
63

7
11

40
15

.7
0

55
.1

7.
0

53
.2

0
27

16
11

12
7.

2
54

.4
ib

m
12

67
73

9
34

1×
34

03
36

10
6

38
10

4.
34

73
6

11
51

25
.4

0
77

.3
10

.4
98

.4
6

21
53

9
13

09
11

.0
10

0.
5

T
ab

le
4.

2
R

es
ul

ts
of

R
eg

ul
ar

R
ou

te
an

d
W

R
O

U
T

E
fo

r
IS

P
D

98
te

st
ca

se
s

www.manaraa.com

83

T
es

tc
as

e
St

at
is

ti
cs

F
R

4.
0

R
eg

ul
ar

R
ou

te
W

R
O

U
T

E
(E

nc
ou

nt
er

)
#

L
oc

.A
vg

.M
ax

M
ax

C
P

U
#

un
as

s-
C

P
U

vi
a

w
le

n
C

P
U

vi
a

w
le

n
N

am
e

#
N

et
s

G
ri

d
#

Se
g.

N
et

s
D

eg
.S

eg
.
P

in
(s

ec
.)

ig
ne

d
(s

ec
.)
×

10
e6
×

10
e7

#
fa

il
vi

ol
.

(s
ec

.)
×

10
e6
×

10
e7

ad
ap

te
c1

21
92

43
89

3×
89

2
98

84
18

54
37

4
4.

28
14

24
25

94
14

1
0

53
7

1.
9

9.
0

0
69

33
7

24
01

2.
1

9.
3

ad
ap

te
c2

25
76

59
11

74
×

11
72

10
40

01
9

44
35

6
4.

09
15

33
30

65
18

9
0

46
9

2.
2

10
.4

0
58

31
7

33
21

2.
5

11
.0

ad
ap

te
c3

46
62

93
19

35
×

19
46

18
87

82
0

44
35

6
4.

01
21

42
49

50
34

2
0

11
76

4.
0

23
.8

5
17

42
95

79
39

4.
3

24
.7

ad
ap

te
c4

51
53

00
19

33
×

19
45

18
12

33
3

85
00

0
3.

70
18

84
38

20
28

9
0

12
20

3.
5

20
.8

15
20

37
83

10
82

4
3.

9
22

.2
ad

ap
te

c5
86

73
44

19
35
×

19
46

35
06

21
61

35
79

5
3.

99
22

03
45

18
69

8
0

36
07

7.
3

48
.8

8
22

29
74

13
72

9
7.

9
50

.3
ne

w
bl

ue
1

33
11

06
93

4×
93

2
10

70
79

2
69

30
0

3.
68

14
42

29
57

42
0

29
7

2.
3

8.
8

0
58

80
9

26
14

2.
4

9.
1

ne
w

bl
ue

51
25

73
34

21
22
×

21
32

45
15

96
52

38
71

2
3.

87
25

21
59

57
70

2
0

26
54

7.
2

46
.3

10
62

87
85

14
59

7
7.

8
48

.8
ne

w
bl

ue
61

28
64

48
23

10
×

23
18

49
44

94
42

08
90

3
4.

09
27

18
52

38
59

8
0

34
45

8.
5

39
.9

0
61

53
76

13
64

5
9.

0
41

.2
bi

gb
lu

e1
28

23
99

89
3×

89
2

11
82

50
6

25
28

8
4.

02
14

10
25

34
13

4
0

80
5

2.
5

10
.9

0
59

55
6

47
38

2.
7

11
.4

bi
gb

lu
e2

57
66

18
15

60
×

15
68

18
26

15
0

92
94

5
3.

60
16

48
38

04
24

9
0

96
7

4.
2

23
.0

4
28

82
71

88
56

4.
6

23
.5

T
ab

le
4.

3
R

es
ul

ts
of

R
eg

ul
ar

R
ou

te
an

d
W

R
O

U
T

E
fo

r
IS

P
D

05
/0

6
te

st
ca

se
s

www.manaraa.com

84

modern large designs.

Conclusion

In this paper, we propose a detailed router which seeks to route global segments with regular

routing patterns. The whole algorithm is based on a bottom-up layer-by-layer processing.

The problem for each layer is partitioned into subproblems by panels. Inside each panel, the

global segment assignment is formulated as a MWIS problem. An effective heuristic and a

few postprocessing techniques are developed. We have shown RegularRoute’s performance

on two sets of detailed routing testcases. In the future, we would like to further improve

RegularRoute’s performance and incorporate more design objectives to make our tool more

suitable for industrial applications. In addition, we are interested in making a parallel version

of our tool for further runtime reduction.

Acknowledgments

The authors would like to thank Dr. Hardy Leung for valuable discussions which inspire

our work, and the University of Michigan CAD group for the helpful placement utility tools to

convert bookshelf placement format to LEF/DEF format.

www.manaraa.com

85

CHAPTER 5. IGD: An Integrated Global Routing and Detailed Routing

Algorithm

A paper submitted to ACM/IEEE Design Automation Conference

Yanheng Zhang and Chris Chu

Abstract

Conventional ideas divide VLSI routing into global routing and detailed routing for maneu-

vering large design data. In global routing, routability associated evaluation is abstracted by

the global routing capacity for each global edge. However, the global capacity model is either

too simplistic or too optimistic to reflect real routing hurdles in detailed routing.

In this paper, we propose IGD: a novel integrated global routing and detailed routing ap-

proach for remedying the inconsistency between global routing and detailed routing. Before

global routing, our approach starts with a more accurate initial capacity prediction for all

global edges. The initial capacity prediction model considers local pins, local connections and

probabilistic pin promotion inside each 3-D global cell (i.e., 3D Cell). Then we use an effective

iterative flow for improving routability for detailed routing in terms of number of unassigned

segments. The hotspot in detailed routing in current iteration is fed back to the global routing

stage to adjust the global capacity in the previous round. To ensure computational feasibility,

fast and efficient academic global routing and detailed routing algorithms FastRoute, Regular-

Route are integrated. We also propose some well-designed methods to achieve short runtime

while maintaining solution quality. Experimental results reveal that our algorithm surpasses

conventional routing flow in routability. In particular, it can reduce the unassigned segments

www.manaraa.com

86

by 80% on average on ISPD98 derived testcases with roughly 3 × runtime overhead compared

with traditional flow.

Introduction

VLSI routing consists the task of connecting pins and ports using over-the-cell metal wires

based on logical connection defined by netlist. The routing performance directly impacts design

metrics such as interconnect delay, power consumption and chip reliability etc. As the fabri-

cation technology enters the nanometer era, VLSI routing is becoming increasingly important.

In one aspect, the degree of complexity of design is increasing dramatically as more modules

are integrated onto the chip. The routing requirement for connecting the pins and ports of

these modules is much higher. In another aspect, with diminishing feature size, there are more

complex design rules imposed to ensure manufacturability. It has been reported that for 32nm

process, the number of rules reaches several thousands [1] and the design rule manual has

roughly a thousand pages [2]. The routing closure (i.e., generate DRC free routing solution) is

harder to achieve and will eventually affect chip time to market (TTM) plan.

It has been proved that VLSI routing is NP-hard. To manage large design data, conventional

flow usually divides the whole routing procedure into global routing and detailed routing stages.

In particular, in global routing stage, layout region is partitioned into G-Cells (i.e., global cells)

and rough routing decision is made based on G-Cell to G-Cell connection on a global routing

grid graph. The subsequent detailed routing realizes exact routing path of the global routing

solution considering both geometrical constraints for metal wires as well as various design rules.

Global Routing Detailed Routing
Name O.F. CPU(sec.) unassiged CPU(sec.)

adaptec1 0 195 17956 566
adaptec2 0 48 34372 442
adaptec3 0 324 28549 1285
adaptec4 0 66 30772 1330
adaptec5 0 559 69017 3782

Table 5.1 Detailed routing solution by detailed router RegularRoute for routable global rout-
ing benchmarks in ISPD07/08 global routing contest.

www.manaraa.com

87

The common objective for global routing is to generate a congestion free solution where

the wiring demands across the G-Cell is below its capacity, or global edge capacty. There

have been many research conducted for developing high performance global router to resist

congestion with given global edge capacity. As revealed by two consecutive annual global

routing contests hosted by ISPD, sequential ripup and reroute based approach is in dominance

over concurrent approach. Contest winning routers: BoxRouter[6], NTHU-R[12], FGR [11] and

FastRotue3.0[50] are proposed during the period of the two contests. Although these routers

acomplish the task of obtaining congestion free solution for most routers, the actual routability

of subsequent detailed routing stage is pending with doubt. In Table 5.1, we compare the

detailed routing results using an academic detailed router for five routable benchmarks of the

contest. The global routing solution is generated using FastRoute 4.0 [42]. The results show

that none of the global routing solution can be routed with the contest defined pitch size.

Although these global routing benchmarks are routable in global routing stage, it is hard to

gurantee the same success in detailed routing stage. In other words, the utilized global edge

capacity in these benchmarks underestimate the hardness of subsequent detailed routing stage.

It is a weak indicator of the real routing hurdles that follows.

Traditionally the value of the capaicty could be roughly determined based on empirical

methods. For instance, certain amount of capacity value is deducted for global edges on first

horizontal and vertical metal layer. And the capacity of global edges that are covered by macro

blocks are subject to scaling called macro porosity. However, these methods usually are not

accurate enough as they lack the local information of each G-Cell. Usually it is not easy to

make a correct choice. Underestimating the capacity will consume more wirelength while being

optimistic might results in trouble for acomplishing routing closure.

In this paper we will present a novel algorithm for addressing the inconsistency between

global and detailed routing stages. Based on our knowledge, the approach is the first algorithm

ever that a detailed router is fully integrated with a global router based on efficient global rout-

ing and detailed routing algorithms FastRoute and RegularRoute. Unlike traditional capacity

assignment methods, our algorithm starts with an initial capacity estimation considering local

www.manaraa.com

88

pins, local nets and probabilistic pin promotions. Then the global routing testcase is routed

by FastRoute and RegularRoute. Based on congestion information generated by detailed router

of current iteration, we adjust the global edge capacity and then retest the testcase with new

capacity. This process is iteratively applied for continuous refinement until congestion free

detailed routing solution is obtained. To perform full global and detailed routing inside the

iterative flow will be very expensive in runtime, we also propose the incremental maze routing

and history-based global segment assignment for alleviating computational complexity.

Thus, novel techniques in this paper are listed below:

• A novel framework integrating global routing and detailed routing

• An effecitve initial global edge capacity estimation by local information of each G-Cell

• A useful feedback methodology to adjust the global edge capacity based on detailed

routing solution

• An incremental global routing method and history based idea in detailed routing for

runtime speedup

We implemented IGD and tested its performance on ISPD98[45] derived testcases. Exper-

imental results show that IGD is capable of generating detailed routing friendly global routing

solutions. The detailed routing stage routability in terms of unassigned segments is improved

by 80% with roughly 3 × runtime overhead. This justifies the necessity of integrating detailed

routing into global routing stage.

The rest of paper is organized as follows: In Section 2, we first review the efficient global

routing and detailed routing algorithms FastRoute and RegularRoute and present the algorithm

flow of IGD. Section 3 discusses the initial global edge capacity prediction. In Section 4,

techniques to integrate global routing into detailed routing are discussed in detail. Experimental

results are shown in Section 5 and we will make conclusion of this paper in Section 6.

www.manaraa.com

89

Materials and Methods

IGD Overview

In this section, we will first present the problem formulation and definitions for global rout-

ing and detailed routing respectively. We then review effective global routing and detailed

routing algorithms FastRoute and RegularRoute. Finally, we will present the flow of our inte-

grated algorithm.

Problem Formulation

We will introduce the formulation for global routing and detailed routing respectively. In

global routing stage, layout region on each layer is divided into a set of 3-D global routing

cells (3-D Cells). The 3-D global routing grid graph is built where each grid point denotes

one 3-D Cell and each global edge represents the common boundary between two 3-D Cells.

Each global edge is assigned with a capacity representing the allowed number of routing usage.

And overflow is the exceeding value of routing usage over global edge capacity. In other word,

oe = ue − ce where oe, ue and ce represent overflow, usage and capacity of edge e respectively.

The primary objective in global routing stage is to minimize overflow. In FastRoute, we lump

the 3-D G-Cells with same X’s and Y’s coordinates on different layers into a 2-D G-Cell (or

G-Cell). The capacity, usage and overflow associated global edges will be lumped together as

well to become the capacity, usage and overflow of the 2-D global edge respectively. The 3-D

grid graph is projected to become a 2-D grid graph. The 2-D solution is first generated and

3-D can be obtained by layer assignment by the 2-D solution.

The detailed routing is formulated the same as RegularRoute. The routing resource is

modeled as a 3-D regular grid graph. Each grid can accomodate one wire except for edges

with blockage. Each layer of graph has a preferred routing direction and the preferred direction

of adjacent layers are perpendicular to each other. And we assume the preferred direction of

lowest layer (metal1) is horizontal. A sequence of unblocked grid edges along the preferred

routing direction of each layer is called routing track. The input is a placed netlist with exact

www.manaraa.com

90

G-Celltrack

panel

Segments

(a) (b)

Upper
layer

3-D
global
edge

via

Figure 5.1 Problem formulation for global routing and detailed routing (a) Detailed routing
with panel, track, segments with two layers (b) Corresponding global routing grid
graph

pin locations and a corresponding 2-D global routing solution in labyrinth[51] format. The

segments are extracted from the 2-D global routing solution representing the horizontal or

vertical interval spanning multiple G-Cells. We also define panel to be the collection of all

tracks on one layer within one row (for odd layer) or one column (for even layer) of G-Cells. If

we respect the input 2-D global routing solution, the segment will be assigned to the tracks on a

deck of panels that are on different layers but associated with the same row/column of G-Cells.

The detailed routing is to route all nets (route all local nets and assign all extracted global

segments) on the grid based on the 2-D global routing solution such that routes of different

nets do not intersect.

The formulation of global routing and detailed routing is illustrated in Figure 5.1. It shows

the concept of G-Cell, global routing grid graph, global routing edge, panel, routing track and

segment respectively.

FastRoute and RegularRoute

FastRoute is very fast and effective global router. It incorporates many novel ideas for solv-

ing increasingly complicated testcases. The work contains a series of publications in main EDA

www.manaraa.com

91

conferences. [7] is the initial work which includes congestion-driven steiner tree construction

and edge shifting. Later in [8], a novel monotonic routing and multi-source multi-sink maze

routing ideas are proposed to enhance the pattern routing and traditional maze routing. In

[50], a virtual capacity idea is introduced for better convergence in maze routing stage. And

the latest works [42, 52] introduce novel ideas for reducing via count and routing detour. Ex-

perimental results have shown that FastRoute is able to generate state-of-the-art global routing

solutions.

RegularRoute[53] is a recently proposed grid-based detailed routing technique. It uses a

bottom-up layer by layer strategy to solve the problem. It employs a single trunk V-Tree

technique to route the local nets. The global segments are assigned panel by panel and inside

each panel a MIS problem is formulated. After solving the MIS problem with efficient heuris-

tic, some postprocessing techniques are proposed to improve assignment rate. In addition to

good assignment rate, RegularRoute is very fast academic detailed router which enables the

possibility of integrating it inside IGD.

Algorithm Flow

The proposed flow is shown in Figure 5.2. Basically the flow contains three stages: (1)

global capacity prediction, (2) initial routing, and (3) iterative improvement. The flow of IGD

incorporates the flow of FastRoute and RegularRoute but it is not simply an addition of the

two. There are many new techniques introduced due to the new objective is to generate best

detailed routing solution.

In particular, the first stage predicts the global capacity for all global edges. Two techniques

are involved. One is a conservative reduction based on local information of adjacent 3D Cells

for first two layers (H and V). The second is a probabilistic methodology for predicting the

promotion of some pins and capacity of related global edges is further reduced. Stage2 performs

initial global routing and detailed routing using the standard Fastroute and RegularRoute flow.

After this stage, an iterative improvement is applied to improve the number of unassigned

segments in previous round. We propose adaptive capacity adjustment scheme for adjusting

www.manaraa.com

92

Stage1: Global Capacity Estimation
2. Generate single trunk V-Tree for local nets
3. Conservative capacity reduction of first two layers
4. Probabilistic pin promotion and further capacity reduction

Stage2: Initial Routing
5. Congestion-driven steiner tree construction
6. Pattern routing in ”L” and ”Z” shape
7. Repeat

a. Full maze routing in rip-up and reroute
8. Until obtain congestion free global routing solution
9. Segment extraction and organization
11. Route global nets by assigning all global segments
12. Obtain information of unassigned segments

Stage3: Iterative Improvement
13. Global capacity adjustment based on unassigned segments
14. Repeat

a. Incremental maze routing in rip-up and reroute
15. Until congestion no longer improves
16. Segment extraction and organization for nets
rerouted in incremental maze routing
17. Assign global segments by history-based technique
18. Repeat Stage 3 until number of unassigned segments
stops improving

Figure 5.2 Flow of IGD

www.manaraa.com

93

the global capacity of previous round. We will then re-run the routing test. To speedup

the algorithm, we introduce an incremental maze routing method and a history based global

segment assignment technique. Moreover, in IGD, detailed routing has been fully integrated in

the flow. Eventually the output is not only a detailed routing friendly global routing solution,

but also the detailed routing solution over it.

Global Capacity Prediction

In this section, we will introduce the global capacity prediction in detail. In the first part,

we will discuss a conservative capacity reduction based on local information of 3-D Cells in

first horizontal metal layer (metal1) and first vertical metal layer (metal2). Then in the second

part we will present a novel probabilistic pin promotion technique to reduce the capacity for

3-D Cells for layers above metal1.

Conservative Capacity Reduction

In global routing, determining the global capacity for each global edge plays an important

role in guaranteeing good solution. In FastRoute, we lump the capacity of all 3-D global edges

as the capacity for the designated 2-D global edge. To determine the capacity for a 3-D global

edge e, the easiest method of calculating the full capacity (eFC). We count the available number

of tracks across the common boundary of the two 3-D Cells (length of 3-D G-Cell boundary

divided by pitch). However, it is an overestimation of the capacity as there are local blockages

such as pins and local connections which will block some tracks. The resulting global routing

solution can be hard to route in detailed routing as the capacity are defined to be too optimistic.

To solve this problem, some empirical methods proposed to reduce certain amount of capacity

out of the full capacity of each 3-D global edge such as the way people use in ISPD07/08 global

routing contest[28, 29]. Again, this idea is hard to manipulate. It is necessary to tune the

amount of reduction for different set of testcases which is very time-consuming.

We propose conservative capacity reduction(CCR) technique to tackle this problem. We

initially calculate the full capacity for all global edges. Then we look into the associated two

www.manaraa.com

94

G-Cell
boundary

G-Cell

pins

checking window

pins

Local wires

Figure 5.3 Conservative capacity reduction

3-D Cells of each global edge, we analyze the local pin and local connections that reside on

the tracks of the two 3-D Cells. We call those tracks as potential blocked tracks(PBT). The

capacity is reduced by the number of PBT from full capacity.

Pins are easier to consider because they are all by themselves. For local nets that need be

connected, we use the single trunk V-Tree (V-Tree) method as in [53] only using metal1 and

metal2. The local connections will be fixed and regarded as blockages on certain routing tracks.

Figure 5.3 denotes one horizontal global edge and the two related 3-D Cells on metal1. The

full capacity of the edge is 5, and the number of PBT is 3. There are two PBTs caused by pins

and one caused by local connection. Then the capacity for this global edge will be adjusted to

be 2. We apply this idea for all global edges on metal1 and metal2 because all pins are located

on metal1 and we only use metal1 and metal2 to construct the local connection1.

Probabilistic Pin Promotion

In RegularRoute, global segments are assigned based on a layer by layer manner. To prevent

the disconnection between the segments that are assigned in upper layers and their pins on

metal1. We promote the pins to upper layer after processing the segments in layer. The

promoted pins are then regarded as local blockages for 3-D Cells in the upper layer.
1Based on the experimental results we have on all ISPD98 derived benchmarks, all local nets can be routed

using the first horizontal and vertical metal layer.

www.manaraa.com

95

However, without exact detailed routing, we are unable to know which pins need be pro-

moted and how they will affect the global capacity in the upper layer. Although it’s doable for

performing a testing round of detailed routing, it will affect the runtime budget of our tool.

We therefore propose a probabilistic pin promotion (PPP) technique assisting estimating the

pin promotion effect on global capacity for global edges above metal1.

The PPP technique is performed in a bottom-up layer by layer flow. For each 3-D Cell

on current layer, we evaluate its pin density based on the ratio of used routing resouce (grid

usage) and total routing resource inside a user-defined window. Note that the pin density value

should be between 0 and 1 ([0,1]). 0 means no usage or blockage surrounding the pin, while 1

means all the grid points inside the window have been taken up. We then generate a random

number between 0 and 1 for the pin. If the number is below the ratio, we will assume it will

be promoted to upper layer. For instance, if one pin is located in metal1, its pin density is 0.5

and the random number is 0.4, then it is promoted to metal2. The smaller the pin density, the

less possible it will be brought. The reason for generating the random number instead of using

the pin density directly is to avoid the case when the pins are quite dense in some region, all

pins in that region will be promoted. But based on our experiments, even for the regions with

high pin density, many pins can be routed without promotion.

The idea is illustrated in Figure 5.4. The box is used to evaluate the density surrounding

the pin, which is 0.375. If the generated random number is smaller than 0.375, it will be

assumed to be promoted. The promoted pin will be on the next layer with the same X’s and

Y’s coordinate. We continue this process until reaching the toplayer or when no more pins

can be promoted. For the 3-D Cells with promoted pin above metal1, we further reduce their

capacity based on CCR as discussed before.

Actually the CCR and PPP techniques work on making a initial estimation of the capacity

using the local information for all 3-D Cells. Is is more accurate than convential ideas which

usually apply uniform capacity based on some empirical methods. Our new techniques have

been verified by experimental results which will be presented in Section 5.

www.manaraa.com

96
G-Cell boundary

G-Cell

pins

checking window

Figure 5.4 Probabilistic pin promotion using window based pin density evaluation

Iterative Improvement Framework

In this section we will talk about iterative improvement, the major idea is to provide feed-

backs based on the detailed routing information in current round. The unrouted segment in

detailed routing stage will be used to adjust the capacity of global edges. And then we perform

incremental global routing and a novel history based detailed routing to incrementally improve

the detailed routing solution QoR in terms of unassigned segments. Finally we will obtain not

only a detailed routing friendly global routing solution, but also a detailed routing solution

over it.

Adaptive Global Capacity Adjustment

As the flow that is shown in Figure 5.2, after the initial capacity prediction, we will perform

initial global routing and detailed routing using FastRoute and RegularRoute with their default

settings. During the global routing stage, the 2-D global routing solution in terms of the routing

path on the global routing grid graph will be obtained. We will then organize the solution into

a set of global segments and then assign the segments in the subsequent detailed routing step.

The routability information in terms of the unassigned segments will indicate where the

possible detailed routing hotspots are. Although we have made initial ”guess” about the global

capacity for each 3-D G-Cell in the initial capacity estimation stage, they are far from being

precise.

www.manaraa.com

97

unassigned segment

Number of Crossing 2 5 3 1

-1

panel in top
H/V layer

assigned segment

Figure 5.5 Adaptive global capacity adjustment based on unassigned global segment

As defined in Section 2.1, a segment in detailed routing is an interval spanning multiple

G-Cells. If we respect the global routing solution, the segment should be assigned to the tracks

on a deck of panels that are on different layers but associated with the same row/column of 3-D

G-Cells. If a segment is unassigned, it indicates there’s no room to accomodate the assignment

inside the corresponding panel on the top layer (top horizontal or vertical metal layer depending

on the direction of segment).

For the unassigned segment, we will investigate the panel on the top layer the segment

resides and find the congested spots. We define the congestion based on the number of crossing

for all global edges the segment goes through. The crossing means the already assigned segment

across one particular global edge. As illustrated in Figure 5.5, the unassigned segment spans 5

3-D G-Cells on the top horizontal layer and the hotspot is the global edge with most number of

crossing, which is second G-Cell boundary (5 corssings). Then the capacity of the corresponding

global edge is reduced by some amount (we use 1). The capacity is reduced such that some

routing usage need be pushed out. We didn’t reduce the capacity much is (1) we are still not

very certain which global edge is the ”real” bottleneck, it is still a in a testing phase (2) we do

not want to disturb the original solution too much, which would lead to much more effort in

global routing and detailed routing in the following iteration. For the global edges where the

difference between usage and capacity is over a threshold (ce−ue > t, where t is the threshold,

and ue will be equal to the number of crossing), we will increase their capacity (ce) by some

www.manaraa.com

98

amount but not exceed the full capacity to absort more usage. This method can spread the

usage more evenly and help alleviate the congestion.

Methods for Runtime Consideration

Up till now, although the proposed idea is feasible, yet the runtime will be a major concern if

we iteratively apply full global routing and detailed routing. As a matter of fact, with smaller

and smaller capacity value on some of the global edges, the global routing might become

too congested to acomplish convergence. And it will spend much more runtime after a few

iterations. To avoid performing routing from scratch, we propose speedup techniques for global

routing step and detailed routing step inside the iterative improvement flow respectively.

Incremental Maze Routing Instead of applying a full global routing after the adaptive

capacity adjustment, we perform incremental maze routing. We apply the maze routing for the

nets that incur congestion after capacity adjustment. The maze routing might not be able to

produce overflow-free solution. In that case, we will terminal the rip-up and reroute and accept

the best available result. After we get the incremental maze routing solution, we will re-extract

the global segments only for the nets that are rerouted during incremental maze routing. It

saves runtime for extracting and organizing all segments.

History-based Detailed Routing In RegularRoute, solution space of assigning global

segment is explored based on the choice of the segment. Basically the choice defines the

components that consist one regular routing solution for the segment. It specifies the particular

track, layer, and terminal connection options. The more choices provided for a segment, the

more flexible the segment can be assigned. However, as noted before, to perform a full detailed

routing inside the iterative flow will be quite expensive. The history-based idea can compensate

the runtime loss while maintains good solution quality. For the nets that are not rerouted and

the derived global segments are successfully assigned last iteration, instead of generating the

whole pool of choices, we will recommend the choice the segment was assigned in the previous

round (rank the recommended choice with higher priority). If the segment is consistently

www.manaraa.com

99

assignable, we gradually decrease the number of choice of it. Otherwise, for the segments that

are tough to handle, we increase the number of choice or even provide full flexibility (incorporate

all possible choices).

Results and Discussion

We implement IGD in C and all our experiments are performed on a machine with 2.67GHz

Intel Xeon CPU and 32G memory. We derive the testcases from ISPD98[20] similar to the

work in [53]. In original ISPD98 placement benchmarks, pins are set to be at the center of each

standard cell, we develop a program to randomly set the pin coordinate and make sure they

satisfy the spacing requirement at the bottom layer. The size of each module in the derived

testcases is the same to that of the IBMv2[49] placement benchmarks. We use Dragon[33] to

generate the placed testcases for ISPD98 benchmarks. After obtaining the placed testcases,

we derive the global routing benchmark with the same format as ISPD07/08 global routing

contest benchmarks [28, 29].

Initial Capacity Prediction Results

empirical ours
Name unassigned CPU(sec.) unassigned CPU(sec.)
ibm01 0 4.14 0 4.49
ibm02 66 9.58 45 11.3
ibm07 94 24.3 63 26.5
ibm08 53 35.2 32 37.7
ibm09 72 32.9 27 35.0
ibm10 95 59.5 70 63.9
ibm11 79 41.0 22 43.5
ibm12 264 74.5 180 77.9
Sum 723 281.1 459 300.3
Norm 1.58 1 1 1.067

Table 5.2 Results comparison with empirical capacity assignment up to stage2 in IGD on
ISPD98 derived testcases.

We will first show the performance of initial capacity prediction on ISPD98 derived testcases.

www.manaraa.com

100

The results are summarized in Table 5.2. The results are compared against empirical methods.

The empirical method assumes the lumped 2-D global edge capacity to be 80% of the full

capacity. For demonstrating the effectiveness of the idea, we only run till stage2 which do

not employ the iterative improvement. The global router (FastRoute) and detailed router

RegularRoute are executed using the same parameter settings.

In Table 5.2, the first column lists the name of all experimental testcases. The next two

columns show the unassigned segments and total CPU time evaluated in seconds for empirical

methods. The final two columns report the results for IGD. We find that IGD surpasses

empirical methods in detailed routing routability, we are able to reduce 60% of unassigned

segments in the initial routing stage (stage2). We also observe that the runtime overhead of

the capacity prediction is small as we are only 7% slower in the total runtime up to stage2 than

the empirical methods. These results suggest that the initial capacity prediction is capable of

providing a better start for producing detailed routing friendly solutions.

Full Results on ISPD98 Testcases

In this part, we will show full results for IGD on the eight ISPD98 derived testcases. We

compare our results with several modes of IGD. All the results are summarized in Table 5.3. In

the table, #Nets is the total number of nets in the testcase, Grid is the scale of global routing

grid, Avg.Deg. is the average net degree for the whoe netlist. These statistics provide a basic

idea of the complexity for each testcase.

The following columns compare the results in more detail on 3 different modes of IGD. In

particular, mode1 is IGD without initial capacity estimation, mode2 is IGD without iterative

improvement, mode3 is IGD with iterative improvement, but using full global routing and

detailed routing instead of the incremental maze routing and history-based global segment

assignment technique. The results of IGD is presented in final columns. From the table, we

are able to view the necessity of all stages inside IGD’s flow. By comparing with mode1, we

observe that initial capacity is useful in providing a good start. The subsequent refinement

becomes more powerful and the final results are also improved in terms of unassigned global

www.manaraa.com

101

st
at

is
ti

cs
m

od
e1

m
od

e2
m

od
e3

ou
rs

A
vg

.
un

as
s-

C
P

U
un

as
s-

C
P

U
un

as
s-

C
P

U
un

as
s-

C
P

U
N

am
e

#
N

et
s

G
ri

d
D

eg
.

ig
ne

d
(s

ec
.)

it
er

ig
ne

d
(s

ec
.)

it
er

.
ig

ne
d

(s
ec

.)
it

er
.

ig
ne

d
(s

ec
.)

it
er

.
ib

m
01

11
50

7
13

3×
13

2
3.

85
0

4.
49

0
0

4.
49

0
0

4.
49

0
0

4.
49

0
ib

m
02

18
42

7
15

2×
15

1
4.

23
12

39
.4

5
45

11
.3

0
5

15
8.

2
4

8
41

.5
5

ib
m

07
44

39
4

22
9×

22
8

3.
70

28
80

.2
4

63
26

.5
0

11
40

9.
5

4
14

83
.4

4
ib

m
08

47
94

4
23

9×
23

8
4.

13
8

10
0.

4
4

32
37

.7
0

0
39

7.
2

4
0

10
2.

8
4

ib
m

09
50

39
3

24
3×

24
2

3.
73

6
11

2.
1

4
27

35
.0

0
0

34
6.

2
5

0
11

4.
8

5
ib

m
10

64
22

7
31

6×
31

5
4.

19
23

26
6.

7
5

70
63

.9
0

11
12

07
.4

5
11

27
0.

5
5

ib
m

11
66

99
4

27
6×

27
5

3.
54

0
17

2.
3

4
22

43
.5

0
0

96
8.

0
4

0
17

5.
5

4
ib

m
12

67
73

9
34

1×
34

0
4.

34
69

38
4.

9
5

18
0

77
.9

0
43

14
28

.6
5

51
38

8.
2

5

T
ab

le
5.

3
R

es
ul

ts
co

m
pa

ri
so

n
fo

r
IG

D
w

it
h

di
ffe

re
nt

m
od

es

www.manaraa.com

102

segments. mode2 suggests the effectiveness of global capacity adjustment. Without the iterative

improvement, the detailed routing solution is becoming much worse. mode3 indicates that

runtime is a concern if we apply full global and detailed routing inside the iterative flow. The

detailed routing solution quality is quite similar but they are very expensive and the total

runtime is on average 5× slower than IGD.

Conclusion

In this paper, we propose IGD: an integrated global routing and detailed routing algorithm.

It is the first algorithm as far as we know to consider detailed routing performance inside

global routing. To enable computational feasibility, two high-performance global and detailed

routers are integrated. We introduce innovative initial capacity estimation as well as adaptive

capacity adjustment based on the detailed routing results. For runtime concerns, we also

propose techniques to speedup IGD including incremental maze routing and history-based

detailed routing.

In the future, we would like to further improve IGD’s performance and scalability. We will

need to propose more intelligent schemes to perform capacity adjustment. Meanwhile, we will

also try to incorporate better global routing or detailed routing algorithms for better QoR.

www.manaraa.com

103

CHAPTER 6. GENERAL CONCLUSIONS

General Discussion

In this thesis, we have provided a series of systematic solutions to the three routability

related physical design phases for placement, global routing and detailed routing respectively.

We have proposed four tools for improving the routability for specific phase or integrating some

phases to build a more powerful and generic flow in achieving routing success. In particular,

we have shown that FastRoute 3.0 can generate high quality solutions for ISPD98, ISPD07

and ISPD08 global routing benchmarks. The placement refinement tool, CROP is capable

of alleviating congestion for both the global routing routability as well as detailed routing

routability for various placement tools. The detailed router we propose is capable of producing

better results for two sets of detailed routing testcases on both routability and design rule

satisfaction. The results of IGD also show the integration of global routing and detailed routing

can successfully reduce the number of unassigned segments. From all these results, we can see

more potential for achieving better routing QoR for modern VLSI designs.

Recommendations for Future Research

We will continue work on improving the performance and scalability for each tool. For

instance, we need further improve the routing wirelength besides the high performance we

achieved in runtime and routability for FastRoute. For CROP, we will try to continue improve

its scalability for the congestion-driven detailed placement technique. For RegularRoute, we

will try to incorporate more design objectives besides routability. We will also make a parallel

version of the tool for further runtime speedup. In terms of IGD, we need further analyze

www.manaraa.com

104

better feedback strategies and try to integrate better global routing and detailed routing tools

to improve its efficiency.

We will also make efforts to better remedy the inconsistencies between each phase so that

the routability objective can be carried out throughout the design flow. It is even possible for

considering the routability issue at early physical design phases or even early design stages such

as logical level design.

www.manaraa.com

105

REFERENCES

[1] Danny Rittman. Nanometer DFM – the tip of the ice. Intelligence: From Science to

Industry, Tayden Design newsletter, March 2008.

[2] Luigi Capodieci. Layout printability verification and physical design regularity: Roadmap

enablers for the next decade. In edp, 2006.

[3] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of

NP-Completeness. Freeman, NY, 1979.

[4] E. Bozorgzadeh R. Kastner and M. Sarrafzadeh. Pattern routing: Use and theory for

increasing predictability and avoiding coupling. IEEE Trans. on Computer-Aided Design

and Integrated Circuits and Systems, 21(7):777–790, July 2002.

[5] Z.Jiang, B.Su, and Y.Chang. Improved global routing through congestion estimation. In

Proc. ACM/IEEE Design Automation Conf., pages 28–31, 2003.

[6] M. Cho and D. Z. Pan. Boxrouter: A new global router based on box expansion and

progressive ilp. In Proc. ACM/IEEE Design Automation Conf., pages 373–378, 2006.

[7] M. Pan and C. Chu. Fastroute: A step to integrate global routing into placement. In Proc.

Intl. Conf. on Computer-Aided Design, pages 464–471, 2006.

[8] M.Pan and C.Chu. FastRoute 2.0: A high-quality and efficient global router. In Proc.

Asia and South Pacific Design Automation Conf., pages 250–255, 2007.

[9] M. M. Ozdal and M. D.F. Wong. Archer: A history-driven global routing algorithm. In

Proc. Intl. Conf. on Computer-Aided Design, pages 481–487, 2007.

www.manaraa.com

106

[10] K. Yuan M. Cho, K. Lu and D. Z. Pan. Boxrouter 2.0: Architecture and implementation

of a hybrid and robust global router. In Proc. Intl. Conf. on Computer-Aided Design,

pages 503–508, 2007.

[11] M. M. Ozdal and M. D.F. Wong. High-performance routing at the nanometer scale. In

Proc. Intl. Conf. on Computer-Aided Design, pages 496–502, 2007.

[12] P.-C. Wu J.-R. Gao and T.-C. Wang. A new global router for modern designs. In Proc.

Asia and South Pacific Design Automation Conf., pages 232–237, 2008.

[13] A. Hashimoto and J. Stevens. Wire routing by optimizing channel assignment within large

apertures. In Proc. ACM/IEEE Design Automation Conf., pages 155–169, 1971.

[14] T. Yoshimura and E. Kuh. Efficient algorithms for channel routing. IEEE Trans. on

Computer-Aided Design, 1(1):633–647, Jan 1982.

[15] J. Cong, J. Fang, and K. Khoo. DUNE-a multilayer gridless routing system. IEEE Trans.

on Computer-Aided Design, 20(5):633–647, May 2001.

[16] Y. Chang and S. Lin. MR: A new framework for multilevel full-chip routing. IEEE Trans.

on Computer-Aided Design, 23(5):793–800, May 2004.

[17] G. Nam, K. Sakallah, and R. Rutenbar. A new FPGA detailed routing approach via search-

based boolean satisfiability. IEEE Trans. on Computer-Aided Design, 21(6):674–684, Jun

2002.

[18] S. Batterywala, N. Shenoy, W. Nicholls, and H. Zhou. Track assignment: A desirable

intermediate step between global routing and detailed routing. In Proc. Intl. Conf. on

Computer-Aided Design, pages 59–66, 2002.

[19] M. Ozdal. Detailed-routing algorithms for dense pin clusters in integrated circuits. IEEE

Trans. on Computer-Aided Design, 28(3):340–349, March 2009.

[20] ISPD98 global routing benchmarks. http://www.ece.ucsb.edu/∼kastner/labyrinth.

www.manaraa.com

107

[21] ISPD05 placement contest benchmarks. http://www.sigda.org/ispd2005/contest.htm.

[22] ISPD06 placement contest benchmarks. http://www.sigda.org/ispd2006/contest.htm.

[23] ISPD08 global routing contest results. http://www.ispd.cc/ispd08 technical program.html.

[24] M.Pan and C.Chu. FastRoute 2.0: A high-quality and efficient global router. In Proc.

Asia and South Pacific Design Automation Conf., pages 250–255, 2007.

[25] L. Mcmurchie and C. Ebeling. Pathfinder: A negotiation-based performance-driven router

for fpgas. In Proc. ACM/SIGDA Intl. Symp. on Field-Programmable Gate, pages 111–117,

1995.

[26] C. Chu. Flute: Fast lookup table based wirelength estimation technique. In Proc. Intl.

Conf. on Computer-Aided Design, pages 696–701, 2004.

[27] M. D. Moffitt. Maizerouter: Engineering an effective global router. In Proc. Asia and

South Pacific Design Automation Conf., pages 226–231, 2008.

[28] ISPD07 global routing contest benchmarks. http://www.sigda.org/ispd2007/contest.htm.

[29] ISPD08 global routing contest benchmarks. http://www.sigda.org/ispd2008/contest.htm.

[30] P.Spindler and F.M.Johannes. Fast and accurate routing demand estimation for efficient

routability-driven placement. In Proc. Conf. on Design, Automation and Test in Europe,

pages 1226–1231, 2007.

[31] Z.Jiang, B.Su, and Y.Chang. Routability-driven analytical placement by net overlapping

removal for large-scale mixed-size designs. In Proc. ACM/IEEE Design Automation Conf.,

pages 167–172, 2008.

[32] K.Tsota, C.Koh, and V.Balakrishnan. Guiding global placement with wire density. In

Proc. Intl. Conf. on Computer-Aided Design, pages 212–217, 2008.

www.manaraa.com

108

[33] X.Yang, B.Choi, and M.Sarrafzadeh. Routability-driven white space allocation for fixed-die

standard-cell placement. IEEE Trans. on Computer-Aided Design and Integrated Circuits

and Systems, 22(4):410–419, April 2003.

[34] C.Li, M.Xie, C.Koh, J.Cong, and P.Madden. Routability-driven placement and white

space allocation. IEEE Trans. on Computer-Aided Design and Integrated Circuits and

Systems, 26(5):167–172, May 2008.

[35] U.Brenner and A.Rohe. An effective congestion-driven placement framework. In Proc.

ACM/SIGDA Intl. Symp. on Physical Design, pages 6–11, 2002.

[36] M.Pan and C.Chu. IPR: An integrated placement and routing algorithm. In Proc.

ACM/IEEE Design Automation Conf., pages 59–62, 2007.

[37] N.Viswanathan and C.Chu. FastPlace: efficient analytical placement using cell shifting,

iterative local refinement and a hybrid net model. In Proc. ACM/SIGDA Intl. Symp. on

Physical Design, pages 26–33, 2004.

[38] J.Roy and I.L.Markov. Seeing the forest and the trees: Steiner wirelength optimization in

placement. IEEE Trans. on Computer-Aided Design and Integrated Circuits and Systems,

26(4):632–644, April 2007.

[39] N.Viswanathan, M.Pan, and C.Chu. FastPlace 3.0: A fast multilevel quadratic placement

algorithm with placement congestion control. In Proc. Asia and South Pacific Design

Automation Conf., pages 135–140, 2007.

[40] T.Chen, Z.Jiang, T.Hsu, H.Chen, and Y.Chang. NTUplace3: An analytical placer for

large-scale mixed-size designs with preplaced blocks and density constraints. IEEE Trans.

on Computer-Aided Design and Integrated Circuits and Systems, 27(7):1228–1240, July

2008.

[41] T.F.Chan, J.Cong, M.Romesis, J.R.Shinnerl, K.Sze, and M.Xie. mPL6: a robust multilevel

mixed-size placement engine. In Proc. ACM/SIGDA Intl. Symp. on Physical Design, pages

227–229, 2005.

www.manaraa.com

109

[42] Y.Xu, Y.Zhang, and C.Chu. FastRoute 4.0: Global router with efficient via minimization.

In Proc. Asia and South Pacific Design Automation Conf., pages 576–581, 2009.

[43] M.Pan, N.Viswanathan, and C.Chu. An efficient and effective detailed placement algo-

rithm. In Proc. Intl. Conf. on Computer-Aided Design, pages 48–55, 2005.

[44] Y.Chang, Y.Lee, and T.Wang. NTHU-Route 2.0: A fast and stable global router. In Proc.

Intl. Conf. on Computer-Aided Design, pages 338–343, 2008.

[45] IBM-Place 1.0 benchmark suites. http://er.cs.ucla.edu/benchmarks/ibm-place/.

[46] H. Shin and A. Vincentelli. A detailed router based on incremental routing modifications:

Mighty. IEEE Trans. on Computer-Aided Design, 6(6):942–955, Nov 1987.

[47] H. Chen, C. Qiao, F. Zhou, and C. Cheng. Refined single trunk tree: A rectilinear Steiner

tree generator for interconnect prediction. In Proc. ACM Intl. Workshop on System Level

Interconnect Prediction, pages 85–89, 2002.

[48] M. Halldorsson. Approximations of weighted independent set and hereditary subset prob-

lems. Journal of Graph Algorithms and Applications, 1(4):1–16, Apr 2000.

[49] IBM-Place 2.0 benchmark suits. http://er.cs.ucla.edu/benchmarks/ibm-place2/.

[50] Y. Zhang Y. Xu and C. Chu. FastRoute 3.0: A fast and high quality global router based

on virtual capacity. In Proc. Intl. Conf. on Computer-Aided Design, pages 344–349, 2008.

[51] E. Bozogzadeh R. Kastner and M. Sarrafzadeh. Predictable routing. In Proc. Intl. Conf.

on Computer-Aided Design, pages 110–113, 2000.

[52] Y. Xu and C. Chu. An auction based pre-processing technique to determine detour in

global routing. In Proc. Intl. Conf. on Computer-Aided Design, pages 305–311, 2010.

[53] Y. Zhang and C. Chu. RegularRoute: An efficient detailed router with regular routing

patterns. Accepted by ACM/SIGDA Intl. Symp. on Physical Design, 2011.

www.manaraa.com

110

ACKNOWLEDGEMENTS

I would use this opportunity to thank those who give me help and support during my Ph.D.

study. First and foremost, I would express my highest gratitude to my major advisor Dr. Chris

Chu for his continuous support during my Ph.D. study. Without his guidance and inspiration,

I could not finish this work. I’m deeply grateful for his support in various aspects including

conducting research, writing papers and presenting my work in technical conferences. I would

also like to thank my committee members Dr. Randall Geiger, Dr. Akhilesh Tyagi, Dr. Degang

Chen and Dr. Yong Guan for their efforts and contributions in my thesis work. I would also

like to thank Dr. Min Pan for his collaboration in taking design contests and suggestions in

my early career.

	2011
	Handling the complexity of routing problem in modern VLSI design
	Yanheng Zhang
	Recommended Citation

	tmp.1335711608.pdf.1N9vt

